File: cgtrfs.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (209 lines) | stat: -rw-r--r-- 11,677 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#include "rb_lapack.h"

extern VOID cgtrfs_(char* trans, integer* n, integer* nrhs, complex* dl, complex* d, complex* du, complex* dlf, complex* df, complex* duf, complex* du2, integer* ipiv, complex* b, integer* ldb, complex* x, integer* ldx, real* ferr, real* berr, complex* work, real* rwork, integer* info);


static VALUE
rblapack_cgtrfs(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_trans;
  char trans; 
  VALUE rblapack_dl;
  complex *dl; 
  VALUE rblapack_d;
  complex *d; 
  VALUE rblapack_du;
  complex *du; 
  VALUE rblapack_dlf;
  complex *dlf; 
  VALUE rblapack_df;
  complex *df; 
  VALUE rblapack_duf;
  complex *duf; 
  VALUE rblapack_du2;
  complex *du2; 
  VALUE rblapack_ipiv;
  integer *ipiv; 
  VALUE rblapack_b;
  complex *b; 
  VALUE rblapack_x;
  complex *x; 
  VALUE rblapack_ferr;
  real *ferr; 
  VALUE rblapack_berr;
  real *berr; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_x_out__;
  complex *x_out__;
  complex *work;
  real *rwork;

  integer n;
  integer ldb;
  integer nrhs;
  integer ldx;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  ferr, berr, info, x = NumRu::Lapack.cgtrfs( trans, dl, d, du, dlf, df, duf, du2, ipiv, b, x, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE CGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  CGTRFS improves the computed solution to a system of linear\n*  equations when the coefficient matrix is tridiagonal, and provides\n*  error bounds and backward error estimates for the solution.\n*\n\n*  Arguments\n*  =========\n*\n*  TRANS   (input) CHARACTER*1\n*          Specifies the form of the system of equations:\n*          = 'N':  A * X = B     (No transpose)\n*          = 'T':  A**T * X = B  (Transpose)\n*          = 'C':  A**H * X = B  (Conjugate transpose)\n*\n*  N       (input) INTEGER\n*          The order of the matrix A.  N >= 0.\n*\n*  NRHS    (input) INTEGER\n*          The number of right hand sides, i.e., the number of columns\n*          of the matrix B.  NRHS >= 0.\n*\n*  DL      (input) COMPLEX array, dimension (N-1)\n*          The (n-1) subdiagonal elements of A.\n*\n*  D       (input) COMPLEX array, dimension (N)\n*          The diagonal elements of A.\n*\n*  DU      (input) COMPLEX array, dimension (N-1)\n*          The (n-1) superdiagonal elements of A.\n*\n*  DLF     (input) COMPLEX array, dimension (N-1)\n*          The (n-1) multipliers that define the matrix L from the\n*          LU factorization of A as computed by CGTTRF.\n*\n*  DF      (input) COMPLEX array, dimension (N)\n*          The n diagonal elements of the upper triangular matrix U from\n*          the LU factorization of A.\n*\n*  DUF     (input) COMPLEX array, dimension (N-1)\n*          The (n-1) elements of the first superdiagonal of U.\n*\n*  DU2     (input) COMPLEX array, dimension (N-2)\n*          The (n-2) elements of the second superdiagonal of U.\n*\n*  IPIV    (input) INTEGER array, dimension (N)\n*          The pivot indices; for 1 <= i <= n, row i of the matrix was\n*          interchanged with row IPIV(i).  IPIV(i) will always be either\n*          i or i+1; IPIV(i) = i indicates a row interchange was not\n*          required.\n*\n*  B       (input) COMPLEX array, dimension (LDB,NRHS)\n*          The right hand side matrix B.\n*\n*  LDB     (input) INTEGER\n*          The leading dimension of the array B.  LDB >= max(1,N).\n*\n*  X       (input/output) COMPLEX array, dimension (LDX,NRHS)\n*          On entry, the solution matrix X, as computed by CGTTRS.\n*          On exit, the improved solution matrix X.\n*\n*  LDX     (input) INTEGER\n*          The leading dimension of the array X.  LDX >= max(1,N).\n*\n*  FERR    (output) REAL array, dimension (NRHS)\n*          The estimated forward error bound for each solution vector\n*          X(j) (the j-th column of the solution matrix X).\n*          If XTRUE is the true solution corresponding to X(j), FERR(j)\n*          is an estimated upper bound for the magnitude of the largest\n*          element in (X(j) - XTRUE) divided by the magnitude of the\n*          largest element in X(j).  The estimate is as reliable as\n*          the estimate for RCOND, and is almost always a slight\n*          overestimate of the true error.\n*\n*  BERR    (output) REAL array, dimension (NRHS)\n*          The componentwise relative backward error of each solution\n*          vector X(j) (i.e., the smallest relative change in\n*          any element of A or B that makes X(j) an exact solution).\n*\n*  WORK    (workspace) COMPLEX array, dimension (2*N)\n*\n*  RWORK   (workspace) REAL array, dimension (N)\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value\n*\n*  Internal Parameters\n*  ===================\n*\n*  ITMAX is the maximum number of steps of iterative refinement.\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  ferr, berr, info, x = NumRu::Lapack.cgtrfs( trans, dl, d, du, dlf, df, duf, du2, ipiv, b, x, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 11 && argc != 11)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 11)", argc);
  rblapack_trans = argv[0];
  rblapack_dl = argv[1];
  rblapack_d = argv[2];
  rblapack_du = argv[3];
  rblapack_dlf = argv[4];
  rblapack_df = argv[5];
  rblapack_duf = argv[6];
  rblapack_du2 = argv[7];
  rblapack_ipiv = argv[8];
  rblapack_b = argv[9];
  rblapack_x = argv[10];
  if (argc == 11) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  trans = StringValueCStr(rblapack_trans)[0];
  if (!NA_IsNArray(rblapack_d))
    rb_raise(rb_eArgError, "d (3th argument) must be NArray");
  if (NA_RANK(rblapack_d) != 1)
    rb_raise(rb_eArgError, "rank of d (3th argument) must be %d", 1);
  n = NA_SHAPE0(rblapack_d);
  if (NA_TYPE(rblapack_d) != NA_SCOMPLEX)
    rblapack_d = na_change_type(rblapack_d, NA_SCOMPLEX);
  d = NA_PTR_TYPE(rblapack_d, complex*);
  if (!NA_IsNArray(rblapack_df))
    rb_raise(rb_eArgError, "df (6th argument) must be NArray");
  if (NA_RANK(rblapack_df) != 1)
    rb_raise(rb_eArgError, "rank of df (6th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_df) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of df must be the same as shape 0 of d");
  if (NA_TYPE(rblapack_df) != NA_SCOMPLEX)
    rblapack_df = na_change_type(rblapack_df, NA_SCOMPLEX);
  df = NA_PTR_TYPE(rblapack_df, complex*);
  if (!NA_IsNArray(rblapack_ipiv))
    rb_raise(rb_eArgError, "ipiv (9th argument) must be NArray");
  if (NA_RANK(rblapack_ipiv) != 1)
    rb_raise(rb_eArgError, "rank of ipiv (9th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_ipiv) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of ipiv must be the same as shape 0 of d");
  if (NA_TYPE(rblapack_ipiv) != NA_LINT)
    rblapack_ipiv = na_change_type(rblapack_ipiv, NA_LINT);
  ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
  if (!NA_IsNArray(rblapack_x))
    rb_raise(rb_eArgError, "x (11th argument) must be NArray");
  if (NA_RANK(rblapack_x) != 2)
    rb_raise(rb_eArgError, "rank of x (11th argument) must be %d", 2);
  ldx = NA_SHAPE0(rblapack_x);
  nrhs = NA_SHAPE1(rblapack_x);
  if (NA_TYPE(rblapack_x) != NA_SCOMPLEX)
    rblapack_x = na_change_type(rblapack_x, NA_SCOMPLEX);
  x = NA_PTR_TYPE(rblapack_x, complex*);
  if (!NA_IsNArray(rblapack_dl))
    rb_raise(rb_eArgError, "dl (2th argument) must be NArray");
  if (NA_RANK(rblapack_dl) != 1)
    rb_raise(rb_eArgError, "rank of dl (2th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_dl) != (n-1))
    rb_raise(rb_eRuntimeError, "shape 0 of dl must be %d", n-1);
  if (NA_TYPE(rblapack_dl) != NA_SCOMPLEX)
    rblapack_dl = na_change_type(rblapack_dl, NA_SCOMPLEX);
  dl = NA_PTR_TYPE(rblapack_dl, complex*);
  if (!NA_IsNArray(rblapack_dlf))
    rb_raise(rb_eArgError, "dlf (5th argument) must be NArray");
  if (NA_RANK(rblapack_dlf) != 1)
    rb_raise(rb_eArgError, "rank of dlf (5th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_dlf) != (n-1))
    rb_raise(rb_eRuntimeError, "shape 0 of dlf must be %d", n-1);
  if (NA_TYPE(rblapack_dlf) != NA_SCOMPLEX)
    rblapack_dlf = na_change_type(rblapack_dlf, NA_SCOMPLEX);
  dlf = NA_PTR_TYPE(rblapack_dlf, complex*);
  if (!NA_IsNArray(rblapack_du2))
    rb_raise(rb_eArgError, "du2 (8th argument) must be NArray");
  if (NA_RANK(rblapack_du2) != 1)
    rb_raise(rb_eArgError, "rank of du2 (8th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_du2) != (n-2))
    rb_raise(rb_eRuntimeError, "shape 0 of du2 must be %d", n-2);
  if (NA_TYPE(rblapack_du2) != NA_SCOMPLEX)
    rblapack_du2 = na_change_type(rblapack_du2, NA_SCOMPLEX);
  du2 = NA_PTR_TYPE(rblapack_du2, complex*);
  if (!NA_IsNArray(rblapack_du))
    rb_raise(rb_eArgError, "du (4th argument) must be NArray");
  if (NA_RANK(rblapack_du) != 1)
    rb_raise(rb_eArgError, "rank of du (4th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_du) != (n-1))
    rb_raise(rb_eRuntimeError, "shape 0 of du must be %d", n-1);
  if (NA_TYPE(rblapack_du) != NA_SCOMPLEX)
    rblapack_du = na_change_type(rblapack_du, NA_SCOMPLEX);
  du = NA_PTR_TYPE(rblapack_du, complex*);
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (10th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (10th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  if (NA_SHAPE1(rblapack_b) != nrhs)
    rb_raise(rb_eRuntimeError, "shape 1 of b must be the same as shape 1 of x");
  if (NA_TYPE(rblapack_b) != NA_SCOMPLEX)
    rblapack_b = na_change_type(rblapack_b, NA_SCOMPLEX);
  b = NA_PTR_TYPE(rblapack_b, complex*);
  if (!NA_IsNArray(rblapack_duf))
    rb_raise(rb_eArgError, "duf (7th argument) must be NArray");
  if (NA_RANK(rblapack_duf) != 1)
    rb_raise(rb_eArgError, "rank of duf (7th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_duf) != (n-1))
    rb_raise(rb_eRuntimeError, "shape 0 of duf must be %d", n-1);
  if (NA_TYPE(rblapack_duf) != NA_SCOMPLEX)
    rblapack_duf = na_change_type(rblapack_duf, NA_SCOMPLEX);
  duf = NA_PTR_TYPE(rblapack_duf, complex*);
  {
    na_shape_t shape[1];
    shape[0] = nrhs;
    rblapack_ferr = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  ferr = NA_PTR_TYPE(rblapack_ferr, real*);
  {
    na_shape_t shape[1];
    shape[0] = nrhs;
    rblapack_berr = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  berr = NA_PTR_TYPE(rblapack_berr, real*);
  {
    na_shape_t shape[2];
    shape[0] = ldx;
    shape[1] = nrhs;
    rblapack_x_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
  }
  x_out__ = NA_PTR_TYPE(rblapack_x_out__, complex*);
  MEMCPY(x_out__, x, complex, NA_TOTAL(rblapack_x));
  rblapack_x = rblapack_x_out__;
  x = x_out__;
  work = ALLOC_N(complex, (2*n));
  rwork = ALLOC_N(real, (n));

  cgtrfs_(&trans, &n, &nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, &ldb, x, &ldx, ferr, berr, work, rwork, &info);

  free(work);
  free(rwork);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(4, rblapack_ferr, rblapack_berr, rblapack_info, rblapack_x);
}

void
init_lapack_cgtrfs(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "cgtrfs", rblapack_cgtrfs, -1);
}