1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
#include "rb_lapack.h"
extern VOID cgtrfs_(char* trans, integer* n, integer* nrhs, complex* dl, complex* d, complex* du, complex* dlf, complex* df, complex* duf, complex* du2, integer* ipiv, complex* b, integer* ldb, complex* x, integer* ldx, real* ferr, real* berr, complex* work, real* rwork, integer* info);
static VALUE
rblapack_cgtrfs(int argc, VALUE *argv, VALUE self){
VALUE rblapack_trans;
char trans;
VALUE rblapack_dl;
complex *dl;
VALUE rblapack_d;
complex *d;
VALUE rblapack_du;
complex *du;
VALUE rblapack_dlf;
complex *dlf;
VALUE rblapack_df;
complex *df;
VALUE rblapack_duf;
complex *duf;
VALUE rblapack_du2;
complex *du2;
VALUE rblapack_ipiv;
integer *ipiv;
VALUE rblapack_b;
complex *b;
VALUE rblapack_x;
complex *x;
VALUE rblapack_ferr;
real *ferr;
VALUE rblapack_berr;
real *berr;
VALUE rblapack_info;
integer info;
VALUE rblapack_x_out__;
complex *x_out__;
complex *work;
real *rwork;
integer n;
integer ldb;
integer nrhs;
integer ldx;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n ferr, berr, info, x = NumRu::Lapack.cgtrfs( trans, dl, d, du, dlf, df, duf, du2, ipiv, b, x, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )\n\n* Purpose\n* =======\n*\n* CGTRFS improves the computed solution to a system of linear\n* equations when the coefficient matrix is tridiagonal, and provides\n* error bounds and backward error estimates for the solution.\n*\n\n* Arguments\n* =========\n*\n* TRANS (input) CHARACTER*1\n* Specifies the form of the system of equations:\n* = 'N': A * X = B (No transpose)\n* = 'T': A**T * X = B (Transpose)\n* = 'C': A**H * X = B (Conjugate transpose)\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* NRHS (input) INTEGER\n* The number of right hand sides, i.e., the number of columns\n* of the matrix B. NRHS >= 0.\n*\n* DL (input) COMPLEX array, dimension (N-1)\n* The (n-1) subdiagonal elements of A.\n*\n* D (input) COMPLEX array, dimension (N)\n* The diagonal elements of A.\n*\n* DU (input) COMPLEX array, dimension (N-1)\n* The (n-1) superdiagonal elements of A.\n*\n* DLF (input) COMPLEX array, dimension (N-1)\n* The (n-1) multipliers that define the matrix L from the\n* LU factorization of A as computed by CGTTRF.\n*\n* DF (input) COMPLEX array, dimension (N)\n* The n diagonal elements of the upper triangular matrix U from\n* the LU factorization of A.\n*\n* DUF (input) COMPLEX array, dimension (N-1)\n* The (n-1) elements of the first superdiagonal of U.\n*\n* DU2 (input) COMPLEX array, dimension (N-2)\n* The (n-2) elements of the second superdiagonal of U.\n*\n* IPIV (input) INTEGER array, dimension (N)\n* The pivot indices; for 1 <= i <= n, row i of the matrix was\n* interchanged with row IPIV(i). IPIV(i) will always be either\n* i or i+1; IPIV(i) = i indicates a row interchange was not\n* required.\n*\n* B (input) COMPLEX array, dimension (LDB,NRHS)\n* The right hand side matrix B.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,N).\n*\n* X (input/output) COMPLEX array, dimension (LDX,NRHS)\n* On entry, the solution matrix X, as computed by CGTTRS.\n* On exit, the improved solution matrix X.\n*\n* LDX (input) INTEGER\n* The leading dimension of the array X. LDX >= max(1,N).\n*\n* FERR (output) REAL array, dimension (NRHS)\n* The estimated forward error bound for each solution vector\n* X(j) (the j-th column of the solution matrix X).\n* If XTRUE is the true solution corresponding to X(j), FERR(j)\n* is an estimated upper bound for the magnitude of the largest\n* element in (X(j) - XTRUE) divided by the magnitude of the\n* largest element in X(j). The estimate is as reliable as\n* the estimate for RCOND, and is almost always a slight\n* overestimate of the true error.\n*\n* BERR (output) REAL array, dimension (NRHS)\n* The componentwise relative backward error of each solution\n* vector X(j) (i.e., the smallest relative change in\n* any element of A or B that makes X(j) an exact solution).\n*\n* WORK (workspace) COMPLEX array, dimension (2*N)\n*\n* RWORK (workspace) REAL array, dimension (N)\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n* Internal Parameters\n* ===================\n*\n* ITMAX is the maximum number of steps of iterative refinement.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n ferr, berr, info, x = NumRu::Lapack.cgtrfs( trans, dl, d, du, dlf, df, duf, du2, ipiv, b, x, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 11 && argc != 11)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 11)", argc);
rblapack_trans = argv[0];
rblapack_dl = argv[1];
rblapack_d = argv[2];
rblapack_du = argv[3];
rblapack_dlf = argv[4];
rblapack_df = argv[5];
rblapack_duf = argv[6];
rblapack_du2 = argv[7];
rblapack_ipiv = argv[8];
rblapack_b = argv[9];
rblapack_x = argv[10];
if (argc == 11) {
} else if (rblapack_options != Qnil) {
} else {
}
trans = StringValueCStr(rblapack_trans)[0];
if (!NA_IsNArray(rblapack_d))
rb_raise(rb_eArgError, "d (3th argument) must be NArray");
if (NA_RANK(rblapack_d) != 1)
rb_raise(rb_eArgError, "rank of d (3th argument) must be %d", 1);
n = NA_SHAPE0(rblapack_d);
if (NA_TYPE(rblapack_d) != NA_SCOMPLEX)
rblapack_d = na_change_type(rblapack_d, NA_SCOMPLEX);
d = NA_PTR_TYPE(rblapack_d, complex*);
if (!NA_IsNArray(rblapack_df))
rb_raise(rb_eArgError, "df (6th argument) must be NArray");
if (NA_RANK(rblapack_df) != 1)
rb_raise(rb_eArgError, "rank of df (6th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_df) != n)
rb_raise(rb_eRuntimeError, "shape 0 of df must be the same as shape 0 of d");
if (NA_TYPE(rblapack_df) != NA_SCOMPLEX)
rblapack_df = na_change_type(rblapack_df, NA_SCOMPLEX);
df = NA_PTR_TYPE(rblapack_df, complex*);
if (!NA_IsNArray(rblapack_ipiv))
rb_raise(rb_eArgError, "ipiv (9th argument) must be NArray");
if (NA_RANK(rblapack_ipiv) != 1)
rb_raise(rb_eArgError, "rank of ipiv (9th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_ipiv) != n)
rb_raise(rb_eRuntimeError, "shape 0 of ipiv must be the same as shape 0 of d");
if (NA_TYPE(rblapack_ipiv) != NA_LINT)
rblapack_ipiv = na_change_type(rblapack_ipiv, NA_LINT);
ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
if (!NA_IsNArray(rblapack_x))
rb_raise(rb_eArgError, "x (11th argument) must be NArray");
if (NA_RANK(rblapack_x) != 2)
rb_raise(rb_eArgError, "rank of x (11th argument) must be %d", 2);
ldx = NA_SHAPE0(rblapack_x);
nrhs = NA_SHAPE1(rblapack_x);
if (NA_TYPE(rblapack_x) != NA_SCOMPLEX)
rblapack_x = na_change_type(rblapack_x, NA_SCOMPLEX);
x = NA_PTR_TYPE(rblapack_x, complex*);
if (!NA_IsNArray(rblapack_dl))
rb_raise(rb_eArgError, "dl (2th argument) must be NArray");
if (NA_RANK(rblapack_dl) != 1)
rb_raise(rb_eArgError, "rank of dl (2th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_dl) != (n-1))
rb_raise(rb_eRuntimeError, "shape 0 of dl must be %d", n-1);
if (NA_TYPE(rblapack_dl) != NA_SCOMPLEX)
rblapack_dl = na_change_type(rblapack_dl, NA_SCOMPLEX);
dl = NA_PTR_TYPE(rblapack_dl, complex*);
if (!NA_IsNArray(rblapack_dlf))
rb_raise(rb_eArgError, "dlf (5th argument) must be NArray");
if (NA_RANK(rblapack_dlf) != 1)
rb_raise(rb_eArgError, "rank of dlf (5th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_dlf) != (n-1))
rb_raise(rb_eRuntimeError, "shape 0 of dlf must be %d", n-1);
if (NA_TYPE(rblapack_dlf) != NA_SCOMPLEX)
rblapack_dlf = na_change_type(rblapack_dlf, NA_SCOMPLEX);
dlf = NA_PTR_TYPE(rblapack_dlf, complex*);
if (!NA_IsNArray(rblapack_du2))
rb_raise(rb_eArgError, "du2 (8th argument) must be NArray");
if (NA_RANK(rblapack_du2) != 1)
rb_raise(rb_eArgError, "rank of du2 (8th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_du2) != (n-2))
rb_raise(rb_eRuntimeError, "shape 0 of du2 must be %d", n-2);
if (NA_TYPE(rblapack_du2) != NA_SCOMPLEX)
rblapack_du2 = na_change_type(rblapack_du2, NA_SCOMPLEX);
du2 = NA_PTR_TYPE(rblapack_du2, complex*);
if (!NA_IsNArray(rblapack_du))
rb_raise(rb_eArgError, "du (4th argument) must be NArray");
if (NA_RANK(rblapack_du) != 1)
rb_raise(rb_eArgError, "rank of du (4th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_du) != (n-1))
rb_raise(rb_eRuntimeError, "shape 0 of du must be %d", n-1);
if (NA_TYPE(rblapack_du) != NA_SCOMPLEX)
rblapack_du = na_change_type(rblapack_du, NA_SCOMPLEX);
du = NA_PTR_TYPE(rblapack_du, complex*);
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (10th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (10th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
if (NA_SHAPE1(rblapack_b) != nrhs)
rb_raise(rb_eRuntimeError, "shape 1 of b must be the same as shape 1 of x");
if (NA_TYPE(rblapack_b) != NA_SCOMPLEX)
rblapack_b = na_change_type(rblapack_b, NA_SCOMPLEX);
b = NA_PTR_TYPE(rblapack_b, complex*);
if (!NA_IsNArray(rblapack_duf))
rb_raise(rb_eArgError, "duf (7th argument) must be NArray");
if (NA_RANK(rblapack_duf) != 1)
rb_raise(rb_eArgError, "rank of duf (7th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_duf) != (n-1))
rb_raise(rb_eRuntimeError, "shape 0 of duf must be %d", n-1);
if (NA_TYPE(rblapack_duf) != NA_SCOMPLEX)
rblapack_duf = na_change_type(rblapack_duf, NA_SCOMPLEX);
duf = NA_PTR_TYPE(rblapack_duf, complex*);
{
na_shape_t shape[1];
shape[0] = nrhs;
rblapack_ferr = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
ferr = NA_PTR_TYPE(rblapack_ferr, real*);
{
na_shape_t shape[1];
shape[0] = nrhs;
rblapack_berr = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
berr = NA_PTR_TYPE(rblapack_berr, real*);
{
na_shape_t shape[2];
shape[0] = ldx;
shape[1] = nrhs;
rblapack_x_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
x_out__ = NA_PTR_TYPE(rblapack_x_out__, complex*);
MEMCPY(x_out__, x, complex, NA_TOTAL(rblapack_x));
rblapack_x = rblapack_x_out__;
x = x_out__;
work = ALLOC_N(complex, (2*n));
rwork = ALLOC_N(real, (n));
cgtrfs_(&trans, &n, &nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, &ldb, x, &ldx, ferr, berr, work, rwork, &info);
free(work);
free(rwork);
rblapack_info = INT2NUM(info);
return rb_ary_new3(4, rblapack_ferr, rblapack_berr, rblapack_info, rblapack_x);
}
void
init_lapack_cgtrfs(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "cgtrfs", rblapack_cgtrfs, -1);
}
|