File: cgtsvx.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (256 lines) | stat: -rw-r--r-- 17,067 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#include "rb_lapack.h"

extern VOID cgtsvx_(char* fact, char* trans, integer* n, integer* nrhs, complex* dl, complex* d, complex* du, complex* dlf, complex* df, complex* duf, complex* du2, integer* ipiv, complex* b, integer* ldb, complex* x, integer* ldx, real* rcond, real* ferr, real* berr, complex* work, real* rwork, integer* info);


static VALUE
rblapack_cgtsvx(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_fact;
  char fact; 
  VALUE rblapack_trans;
  char trans; 
  VALUE rblapack_dl;
  complex *dl; 
  VALUE rblapack_d;
  complex *d; 
  VALUE rblapack_du;
  complex *du; 
  VALUE rblapack_dlf;
  complex *dlf; 
  VALUE rblapack_df;
  complex *df; 
  VALUE rblapack_duf;
  complex *duf; 
  VALUE rblapack_du2;
  complex *du2; 
  VALUE rblapack_ipiv;
  integer *ipiv; 
  VALUE rblapack_b;
  complex *b; 
  VALUE rblapack_x;
  complex *x; 
  VALUE rblapack_rcond;
  real rcond; 
  VALUE rblapack_ferr;
  real *ferr; 
  VALUE rblapack_berr;
  real *berr; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_dlf_out__;
  complex *dlf_out__;
  VALUE rblapack_df_out__;
  complex *df_out__;
  VALUE rblapack_duf_out__;
  complex *duf_out__;
  VALUE rblapack_du2_out__;
  complex *du2_out__;
  VALUE rblapack_ipiv_out__;
  integer *ipiv_out__;
  complex *work;
  real *rwork;

  integer n;
  integer ldb;
  integer nrhs;
  integer ldx;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  x, rcond, ferr, berr, info, dlf, df, duf, du2, ipiv = NumRu::Lapack.cgtsvx( fact, trans, dl, d, du, dlf, df, duf, du2, ipiv, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE CGTSVX( FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  CGTSVX uses the LU factorization to compute the solution to a complex\n*  system of linear equations A * X = B, A**T * X = B, or A**H * X = B,\n*  where A is a tridiagonal matrix of order N and X and B are N-by-NRHS\n*  matrices.\n*\n*  Error bounds on the solution and a condition estimate are also\n*  provided.\n*\n*  Description\n*  ===========\n*\n*  The following steps are performed:\n*\n*  1. If FACT = 'N', the LU decomposition is used to factor the matrix A\n*     as A = L * U, where L is a product of permutation and unit lower\n*     bidiagonal matrices and U is upper triangular with nonzeros in\n*     only the main diagonal and first two superdiagonals.\n*\n*  2. If some U(i,i)=0, so that U is exactly singular, then the routine\n*     returns with INFO = i. Otherwise, the factored form of A is used\n*     to estimate the condition number of the matrix A.  If the\n*     reciprocal of the condition number is less than machine precision,\n*     INFO = N+1 is returned as a warning, but the routine still goes on\n*     to solve for X and compute error bounds as described below.\n*\n*  3. The system of equations is solved for X using the factored form\n*     of A.\n*\n*  4. Iterative refinement is applied to improve the computed solution\n*     matrix and calculate error bounds and backward error estimates\n*     for it.\n*\n\n*  Arguments\n*  =========\n*\n*  FACT    (input) CHARACTER*1\n*          Specifies whether or not the factored form of A has been\n*          supplied on entry.\n*          = 'F':  DLF, DF, DUF, DU2, and IPIV contain the factored form\n*                  of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV will not\n*                  be modified.\n*          = 'N':  The matrix will be copied to DLF, DF, and DUF\n*                  and factored.\n*\n*  TRANS   (input) CHARACTER*1\n*          Specifies the form of the system of equations:\n*          = 'N':  A * X = B     (No transpose)\n*          = 'T':  A**T * X = B  (Transpose)\n*          = 'C':  A**H * X = B  (Conjugate transpose)\n*\n*  N       (input) INTEGER\n*          The order of the matrix A.  N >= 0.\n*\n*  NRHS    (input) INTEGER\n*          The number of right hand sides, i.e., the number of columns\n*          of the matrix B.  NRHS >= 0.\n*\n*  DL      (input) COMPLEX array, dimension (N-1)\n*          The (n-1) subdiagonal elements of A.\n*\n*  D       (input) COMPLEX array, dimension (N)\n*          The n diagonal elements of A.\n*\n*  DU      (input) COMPLEX array, dimension (N-1)\n*          The (n-1) superdiagonal elements of A.\n*\n*  DLF     (input or output) COMPLEX array, dimension (N-1)\n*          If FACT = 'F', then DLF is an input argument and on entry\n*          contains the (n-1) multipliers that define the matrix L from\n*          the LU factorization of A as computed by CGTTRF.\n*\n*          If FACT = 'N', then DLF is an output argument and on exit\n*          contains the (n-1) multipliers that define the matrix L from\n*          the LU factorization of A.\n*\n*  DF      (input or output) COMPLEX array, dimension (N)\n*          If FACT = 'F', then DF is an input argument and on entry\n*          contains the n diagonal elements of the upper triangular\n*          matrix U from the LU factorization of A.\n*\n*          If FACT = 'N', then DF is an output argument and on exit\n*          contains the n diagonal elements of the upper triangular\n*          matrix U from the LU factorization of A.\n*\n*  DUF     (input or output) COMPLEX array, dimension (N-1)\n*          If FACT = 'F', then DUF is an input argument and on entry\n*          contains the (n-1) elements of the first superdiagonal of U.\n*\n*          If FACT = 'N', then DUF is an output argument and on exit\n*          contains the (n-1) elements of the first superdiagonal of U.\n*\n*  DU2     (input or output) COMPLEX array, dimension (N-2)\n*          If FACT = 'F', then DU2 is an input argument and on entry\n*          contains the (n-2) elements of the second superdiagonal of\n*          U.\n*\n*          If FACT = 'N', then DU2 is an output argument and on exit\n*          contains the (n-2) elements of the second superdiagonal of\n*          U.\n*\n*  IPIV    (input or output) INTEGER array, dimension (N)\n*          If FACT = 'F', then IPIV is an input argument and on entry\n*          contains the pivot indices from the LU factorization of A as\n*          computed by CGTTRF.\n*\n*          If FACT = 'N', then IPIV is an output argument and on exit\n*          contains the pivot indices from the LU factorization of A;\n*          row i of the matrix was interchanged with row IPIV(i).\n*          IPIV(i) will always be either i or i+1; IPIV(i) = i indicates\n*          a row interchange was not required.\n*\n*  B       (input) COMPLEX array, dimension (LDB,NRHS)\n*          The N-by-NRHS right hand side matrix B.\n*\n*  LDB     (input) INTEGER\n*          The leading dimension of the array B.  LDB >= max(1,N).\n*\n*  X       (output) COMPLEX array, dimension (LDX,NRHS)\n*          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.\n*\n*  LDX     (input) INTEGER\n*          The leading dimension of the array X.  LDX >= max(1,N).\n*\n*  RCOND   (output) REAL\n*          The estimate of the reciprocal condition number of the matrix\n*          A.  If RCOND is less than the machine precision (in\n*          particular, if RCOND = 0), the matrix is singular to working\n*          precision.  This condition is indicated by a return code of\n*          INFO > 0.\n*\n*  FERR    (output) REAL array, dimension (NRHS)\n*          The estimated forward error bound for each solution vector\n*          X(j) (the j-th column of the solution matrix X).\n*          If XTRUE is the true solution corresponding to X(j), FERR(j)\n*          is an estimated upper bound for the magnitude of the largest\n*          element in (X(j) - XTRUE) divided by the magnitude of the\n*          largest element in X(j).  The estimate is as reliable as\n*          the estimate for RCOND, and is almost always a slight\n*          overestimate of the true error.\n*\n*  BERR    (output) REAL array, dimension (NRHS)\n*          The componentwise relative backward error of each solution\n*          vector X(j) (i.e., the smallest relative change in\n*          any element of A or B that makes X(j) an exact solution).\n*\n*  WORK    (workspace) COMPLEX array, dimension (2*N)\n*\n*  RWORK   (workspace) REAL array, dimension (N)\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value\n*          > 0:  if INFO = i, and i is\n*                <= N:  U(i,i) is exactly zero.  The factorization\n*                       has not been completed unless i = N, but the\n*                       factor U is exactly singular, so the solution\n*                       and error bounds could not be computed.\n*                       RCOND = 0 is returned.\n*                = N+1: U is nonsingular, but RCOND is less than machine\n*                       precision, meaning that the matrix is singular\n*                       to working precision.  Nevertheless, the\n*                       solution and error bounds are computed because\n*                       there are a number of situations where the\n*                       computed solution can be more accurate than the\n*                       value of RCOND would suggest.\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  x, rcond, ferr, berr, info, dlf, df, duf, du2, ipiv = NumRu::Lapack.cgtsvx( fact, trans, dl, d, du, dlf, df, duf, du2, ipiv, b, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 11 && argc != 11)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 11)", argc);
  rblapack_fact = argv[0];
  rblapack_trans = argv[1];
  rblapack_dl = argv[2];
  rblapack_d = argv[3];
  rblapack_du = argv[4];
  rblapack_dlf = argv[5];
  rblapack_df = argv[6];
  rblapack_duf = argv[7];
  rblapack_du2 = argv[8];
  rblapack_ipiv = argv[9];
  rblapack_b = argv[10];
  if (argc == 11) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  fact = StringValueCStr(rblapack_fact)[0];
  if (!NA_IsNArray(rblapack_d))
    rb_raise(rb_eArgError, "d (4th argument) must be NArray");
  if (NA_RANK(rblapack_d) != 1)
    rb_raise(rb_eArgError, "rank of d (4th argument) must be %d", 1);
  n = NA_SHAPE0(rblapack_d);
  if (NA_TYPE(rblapack_d) != NA_SCOMPLEX)
    rblapack_d = na_change_type(rblapack_d, NA_SCOMPLEX);
  d = NA_PTR_TYPE(rblapack_d, complex*);
  if (!NA_IsNArray(rblapack_df))
    rb_raise(rb_eArgError, "df (7th argument) must be NArray");
  if (NA_RANK(rblapack_df) != 1)
    rb_raise(rb_eArgError, "rank of df (7th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_df) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of df must be the same as shape 0 of d");
  if (NA_TYPE(rblapack_df) != NA_SCOMPLEX)
    rblapack_df = na_change_type(rblapack_df, NA_SCOMPLEX);
  df = NA_PTR_TYPE(rblapack_df, complex*);
  if (!NA_IsNArray(rblapack_ipiv))
    rb_raise(rb_eArgError, "ipiv (10th argument) must be NArray");
  if (NA_RANK(rblapack_ipiv) != 1)
    rb_raise(rb_eArgError, "rank of ipiv (10th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_ipiv) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of ipiv must be the same as shape 0 of d");
  if (NA_TYPE(rblapack_ipiv) != NA_LINT)
    rblapack_ipiv = na_change_type(rblapack_ipiv, NA_LINT);
  ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
  ldx = MAX(1,n);
  trans = StringValueCStr(rblapack_trans)[0];
  if (!NA_IsNArray(rblapack_du))
    rb_raise(rb_eArgError, "du (5th argument) must be NArray");
  if (NA_RANK(rblapack_du) != 1)
    rb_raise(rb_eArgError, "rank of du (5th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_du) != (n-1))
    rb_raise(rb_eRuntimeError, "shape 0 of du must be %d", n-1);
  if (NA_TYPE(rblapack_du) != NA_SCOMPLEX)
    rblapack_du = na_change_type(rblapack_du, NA_SCOMPLEX);
  du = NA_PTR_TYPE(rblapack_du, complex*);
  if (!NA_IsNArray(rblapack_duf))
    rb_raise(rb_eArgError, "duf (8th argument) must be NArray");
  if (NA_RANK(rblapack_duf) != 1)
    rb_raise(rb_eArgError, "rank of duf (8th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_duf) != (n-1))
    rb_raise(rb_eRuntimeError, "shape 0 of duf must be %d", n-1);
  if (NA_TYPE(rblapack_duf) != NA_SCOMPLEX)
    rblapack_duf = na_change_type(rblapack_duf, NA_SCOMPLEX);
  duf = NA_PTR_TYPE(rblapack_duf, complex*);
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (11th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (11th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  nrhs = NA_SHAPE1(rblapack_b);
  if (NA_TYPE(rblapack_b) != NA_SCOMPLEX)
    rblapack_b = na_change_type(rblapack_b, NA_SCOMPLEX);
  b = NA_PTR_TYPE(rblapack_b, complex*);
  if (!NA_IsNArray(rblapack_dl))
    rb_raise(rb_eArgError, "dl (3th argument) must be NArray");
  if (NA_RANK(rblapack_dl) != 1)
    rb_raise(rb_eArgError, "rank of dl (3th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_dl) != (n-1))
    rb_raise(rb_eRuntimeError, "shape 0 of dl must be %d", n-1);
  if (NA_TYPE(rblapack_dl) != NA_SCOMPLEX)
    rblapack_dl = na_change_type(rblapack_dl, NA_SCOMPLEX);
  dl = NA_PTR_TYPE(rblapack_dl, complex*);
  if (!NA_IsNArray(rblapack_du2))
    rb_raise(rb_eArgError, "du2 (9th argument) must be NArray");
  if (NA_RANK(rblapack_du2) != 1)
    rb_raise(rb_eArgError, "rank of du2 (9th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_du2) != (n-2))
    rb_raise(rb_eRuntimeError, "shape 0 of du2 must be %d", n-2);
  if (NA_TYPE(rblapack_du2) != NA_SCOMPLEX)
    rblapack_du2 = na_change_type(rblapack_du2, NA_SCOMPLEX);
  du2 = NA_PTR_TYPE(rblapack_du2, complex*);
  if (!NA_IsNArray(rblapack_dlf))
    rb_raise(rb_eArgError, "dlf (6th argument) must be NArray");
  if (NA_RANK(rblapack_dlf) != 1)
    rb_raise(rb_eArgError, "rank of dlf (6th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_dlf) != (n-1))
    rb_raise(rb_eRuntimeError, "shape 0 of dlf must be %d", n-1);
  if (NA_TYPE(rblapack_dlf) != NA_SCOMPLEX)
    rblapack_dlf = na_change_type(rblapack_dlf, NA_SCOMPLEX);
  dlf = NA_PTR_TYPE(rblapack_dlf, complex*);
  {
    na_shape_t shape[2];
    shape[0] = ldx;
    shape[1] = nrhs;
    rblapack_x = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
  }
  x = NA_PTR_TYPE(rblapack_x, complex*);
  {
    na_shape_t shape[1];
    shape[0] = nrhs;
    rblapack_ferr = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  ferr = NA_PTR_TYPE(rblapack_ferr, real*);
  {
    na_shape_t shape[1];
    shape[0] = nrhs;
    rblapack_berr = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  berr = NA_PTR_TYPE(rblapack_berr, real*);
  {
    na_shape_t shape[1];
    shape[0] = n-1;
    rblapack_dlf_out__ = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
  }
  dlf_out__ = NA_PTR_TYPE(rblapack_dlf_out__, complex*);
  MEMCPY(dlf_out__, dlf, complex, NA_TOTAL(rblapack_dlf));
  rblapack_dlf = rblapack_dlf_out__;
  dlf = dlf_out__;
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_df_out__ = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
  }
  df_out__ = NA_PTR_TYPE(rblapack_df_out__, complex*);
  MEMCPY(df_out__, df, complex, NA_TOTAL(rblapack_df));
  rblapack_df = rblapack_df_out__;
  df = df_out__;
  {
    na_shape_t shape[1];
    shape[0] = n-1;
    rblapack_duf_out__ = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
  }
  duf_out__ = NA_PTR_TYPE(rblapack_duf_out__, complex*);
  MEMCPY(duf_out__, duf, complex, NA_TOTAL(rblapack_duf));
  rblapack_duf = rblapack_duf_out__;
  duf = duf_out__;
  {
    na_shape_t shape[1];
    shape[0] = n-2;
    rblapack_du2_out__ = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
  }
  du2_out__ = NA_PTR_TYPE(rblapack_du2_out__, complex*);
  MEMCPY(du2_out__, du2, complex, NA_TOTAL(rblapack_du2));
  rblapack_du2 = rblapack_du2_out__;
  du2 = du2_out__;
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_ipiv_out__ = na_make_object(NA_LINT, 1, shape, cNArray);
  }
  ipiv_out__ = NA_PTR_TYPE(rblapack_ipiv_out__, integer*);
  MEMCPY(ipiv_out__, ipiv, integer, NA_TOTAL(rblapack_ipiv));
  rblapack_ipiv = rblapack_ipiv_out__;
  ipiv = ipiv_out__;
  work = ALLOC_N(complex, (2*n));
  rwork = ALLOC_N(real, (n));

  cgtsvx_(&fact, &trans, &n, &nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, &ldb, x, &ldx, &rcond, ferr, berr, work, rwork, &info);

  free(work);
  free(rwork);
  rblapack_rcond = rb_float_new((double)rcond);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(10, rblapack_x, rblapack_rcond, rblapack_ferr, rblapack_berr, rblapack_info, rblapack_dlf, rblapack_df, rblapack_duf, rblapack_du2, rblapack_ipiv);
}

void
init_lapack_cgtsvx(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "cgtsvx", rblapack_cgtsvx, -1);
}