1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
#include "rb_lapack.h"
extern VOID cgtts2_(integer* itrans, integer* n, integer* nrhs, complex* dl, complex* d, complex* du, complex* du2, integer* ipiv, complex* b, integer* ldb);
static VALUE
rblapack_cgtts2(int argc, VALUE *argv, VALUE self){
VALUE rblapack_itrans;
integer itrans;
VALUE rblapack_dl;
complex *dl;
VALUE rblapack_d;
complex *d;
VALUE rblapack_du;
complex *du;
VALUE rblapack_du2;
complex *du2;
VALUE rblapack_ipiv;
integer *ipiv;
VALUE rblapack_b;
complex *b;
VALUE rblapack_b_out__;
complex *b_out__;
integer n;
integer ldb;
integer nrhs;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n b = NumRu::Lapack.cgtts2( itrans, dl, d, du, du2, ipiv, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )\n\n* Purpose\n* =======\n*\n* CGTTS2 solves one of the systems of equations\n* A * X = B, A**T * X = B, or A**H * X = B,\n* with a tridiagonal matrix A using the LU factorization computed\n* by CGTTRF.\n*\n\n* Arguments\n* =========\n*\n* ITRANS (input) INTEGER\n* Specifies the form of the system of equations.\n* = 0: A * X = B (No transpose)\n* = 1: A**T * X = B (Transpose)\n* = 2: A**H * X = B (Conjugate transpose)\n*\n* N (input) INTEGER\n* The order of the matrix A.\n*\n* NRHS (input) INTEGER\n* The number of right hand sides, i.e., the number of columns\n* of the matrix B. NRHS >= 0.\n*\n* DL (input) COMPLEX array, dimension (N-1)\n* The (n-1) multipliers that define the matrix L from the\n* LU factorization of A.\n*\n* D (input) COMPLEX array, dimension (N)\n* The n diagonal elements of the upper triangular matrix U from\n* the LU factorization of A.\n*\n* DU (input) COMPLEX array, dimension (N-1)\n* The (n-1) elements of the first super-diagonal of U.\n*\n* DU2 (input) COMPLEX array, dimension (N-2)\n* The (n-2) elements of the second super-diagonal of U.\n*\n* IPIV (input) INTEGER array, dimension (N)\n* The pivot indices; for 1 <= i <= n, row i of the matrix was\n* interchanged with row IPIV(i). IPIV(i) will always be either\n* i or i+1; IPIV(i) = i indicates a row interchange was not\n* required.\n*\n* B (input/output) COMPLEX array, dimension (LDB,NRHS)\n* On entry, the matrix of right hand side vectors B.\n* On exit, B is overwritten by the solution vectors X.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,N).\n*\n\n* =====================================================================\n*\n* .. Local Scalars ..\n INTEGER I, J\n COMPLEX TEMP\n* ..\n* .. Intrinsic Functions ..\n INTRINSIC CONJG\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n b = NumRu::Lapack.cgtts2( itrans, dl, d, du, du2, ipiv, b, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 7 && argc != 7)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 7)", argc);
rblapack_itrans = argv[0];
rblapack_dl = argv[1];
rblapack_d = argv[2];
rblapack_du = argv[3];
rblapack_du2 = argv[4];
rblapack_ipiv = argv[5];
rblapack_b = argv[6];
if (argc == 7) {
} else if (rblapack_options != Qnil) {
} else {
}
itrans = NUM2INT(rblapack_itrans);
if (!NA_IsNArray(rblapack_d))
rb_raise(rb_eArgError, "d (3th argument) must be NArray");
if (NA_RANK(rblapack_d) != 1)
rb_raise(rb_eArgError, "rank of d (3th argument) must be %d", 1);
n = NA_SHAPE0(rblapack_d);
if (NA_TYPE(rblapack_d) != NA_SCOMPLEX)
rblapack_d = na_change_type(rblapack_d, NA_SCOMPLEX);
d = NA_PTR_TYPE(rblapack_d, complex*);
if (!NA_IsNArray(rblapack_ipiv))
rb_raise(rb_eArgError, "ipiv (6th argument) must be NArray");
if (NA_RANK(rblapack_ipiv) != 1)
rb_raise(rb_eArgError, "rank of ipiv (6th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_ipiv) != n)
rb_raise(rb_eRuntimeError, "shape 0 of ipiv must be the same as shape 0 of d");
if (NA_TYPE(rblapack_ipiv) != NA_LINT)
rblapack_ipiv = na_change_type(rblapack_ipiv, NA_LINT);
ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
if (!NA_IsNArray(rblapack_dl))
rb_raise(rb_eArgError, "dl (2th argument) must be NArray");
if (NA_RANK(rblapack_dl) != 1)
rb_raise(rb_eArgError, "rank of dl (2th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_dl) != (n-1))
rb_raise(rb_eRuntimeError, "shape 0 of dl must be %d", n-1);
if (NA_TYPE(rblapack_dl) != NA_SCOMPLEX)
rblapack_dl = na_change_type(rblapack_dl, NA_SCOMPLEX);
dl = NA_PTR_TYPE(rblapack_dl, complex*);
if (!NA_IsNArray(rblapack_du2))
rb_raise(rb_eArgError, "du2 (5th argument) must be NArray");
if (NA_RANK(rblapack_du2) != 1)
rb_raise(rb_eArgError, "rank of du2 (5th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_du2) != (n-2))
rb_raise(rb_eRuntimeError, "shape 0 of du2 must be %d", n-2);
if (NA_TYPE(rblapack_du2) != NA_SCOMPLEX)
rblapack_du2 = na_change_type(rblapack_du2, NA_SCOMPLEX);
du2 = NA_PTR_TYPE(rblapack_du2, complex*);
if (!NA_IsNArray(rblapack_du))
rb_raise(rb_eArgError, "du (4th argument) must be NArray");
if (NA_RANK(rblapack_du) != 1)
rb_raise(rb_eArgError, "rank of du (4th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_du) != (n-1))
rb_raise(rb_eRuntimeError, "shape 0 of du must be %d", n-1);
if (NA_TYPE(rblapack_du) != NA_SCOMPLEX)
rblapack_du = na_change_type(rblapack_du, NA_SCOMPLEX);
du = NA_PTR_TYPE(rblapack_du, complex*);
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (7th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (7th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
nrhs = NA_SHAPE1(rblapack_b);
if (NA_TYPE(rblapack_b) != NA_SCOMPLEX)
rblapack_b = na_change_type(rblapack_b, NA_SCOMPLEX);
b = NA_PTR_TYPE(rblapack_b, complex*);
{
na_shape_t shape[2];
shape[0] = ldb;
shape[1] = nrhs;
rblapack_b_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
b_out__ = NA_PTR_TYPE(rblapack_b_out__, complex*);
MEMCPY(b_out__, b, complex, NA_TOTAL(rblapack_b));
rblapack_b = rblapack_b_out__;
b = b_out__;
cgtts2_(&itrans, &n, &nrhs, dl, d, du, du2, ipiv, b, &ldb);
return rblapack_b;
}
void
init_lapack_cgtts2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "cgtts2", rblapack_cgtts2, -1);
}
|