File: chbev.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (110 lines) | stat: -rw-r--r-- 6,043 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#include "rb_lapack.h"

extern VOID chbev_(char* jobz, char* uplo, integer* n, integer* kd, complex* ab, integer* ldab, real* w, complex* z, integer* ldz, complex* work, real* rwork, integer* info);


static VALUE
rblapack_chbev(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_jobz;
  char jobz; 
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_kd;
  integer kd; 
  VALUE rblapack_ab;
  complex *ab; 
  VALUE rblapack_w;
  real *w; 
  VALUE rblapack_z;
  complex *z; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_ab_out__;
  complex *ab_out__;
  complex *work;
  real *rwork;

  integer ldab;
  integer n;
  integer ldz;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  w, z, info, ab = NumRu::Lapack.chbev( jobz, uplo, kd, ab, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE CHBEV( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK, RWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  CHBEV computes all the eigenvalues and, optionally, eigenvectors of\n*  a complex Hermitian band matrix A.\n*\n\n*  Arguments\n*  =========\n*\n*  JOBZ    (input) CHARACTER*1\n*          = 'N':  Compute eigenvalues only;\n*          = 'V':  Compute eigenvalues and eigenvectors.\n*\n*  UPLO    (input) CHARACTER*1\n*          = 'U':  Upper triangle of A is stored;\n*          = 'L':  Lower triangle of A is stored.\n*\n*  N       (input) INTEGER\n*          The order of the matrix A.  N >= 0.\n*\n*  KD      (input) INTEGER\n*          The number of superdiagonals of the matrix A if UPLO = 'U',\n*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.\n*\n*  AB      (input/output) COMPLEX array, dimension (LDAB, N)\n*          On entry, the upper or lower triangle of the Hermitian band\n*          matrix A, stored in the first KD+1 rows of the array.  The\n*          j-th column of A is stored in the j-th column of the array AB\n*          as follows:\n*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;\n*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).\n*\n*          On exit, AB is overwritten by values generated during the\n*          reduction to tridiagonal form.  If UPLO = 'U', the first\n*          superdiagonal and the diagonal of the tridiagonal matrix T\n*          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',\n*          the diagonal and first subdiagonal of T are returned in the\n*          first two rows of AB.\n*\n*  LDAB    (input) INTEGER\n*          The leading dimension of the array AB.  LDAB >= KD + 1.\n*\n*  W       (output) REAL array, dimension (N)\n*          If INFO = 0, the eigenvalues in ascending order.\n*\n*  Z       (output) COMPLEX array, dimension (LDZ, N)\n*          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal\n*          eigenvectors of the matrix A, with the i-th column of Z\n*          holding the eigenvector associated with W(i).\n*          If JOBZ = 'N', then Z is not referenced.\n*\n*  LDZ     (input) INTEGER\n*          The leading dimension of the array Z.  LDZ >= 1, and if\n*          JOBZ = 'V', LDZ >= max(1,N).\n*\n*  WORK    (workspace) COMPLEX array, dimension (N)\n*\n*  RWORK   (workspace) REAL array, dimension (max(1,3*N-2))\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit.\n*          < 0:  if INFO = -i, the i-th argument had an illegal value.\n*          > 0:  if INFO = i, the algorithm failed to converge; i\n*                off-diagonal elements of an intermediate tridiagonal\n*                form did not converge to zero.\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  w, z, info, ab = NumRu::Lapack.chbev( jobz, uplo, kd, ab, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 4 && argc != 4)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
  rblapack_jobz = argv[0];
  rblapack_uplo = argv[1];
  rblapack_kd = argv[2];
  rblapack_ab = argv[3];
  if (argc == 4) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  jobz = StringValueCStr(rblapack_jobz)[0];
  kd = NUM2INT(rblapack_kd);
  uplo = StringValueCStr(rblapack_uplo)[0];
  if (!NA_IsNArray(rblapack_ab))
    rb_raise(rb_eArgError, "ab (4th argument) must be NArray");
  if (NA_RANK(rblapack_ab) != 2)
    rb_raise(rb_eArgError, "rank of ab (4th argument) must be %d", 2);
  ldab = NA_SHAPE0(rblapack_ab);
  n = NA_SHAPE1(rblapack_ab);
  if (NA_TYPE(rblapack_ab) != NA_SCOMPLEX)
    rblapack_ab = na_change_type(rblapack_ab, NA_SCOMPLEX);
  ab = NA_PTR_TYPE(rblapack_ab, complex*);
  ldz = lsame_(&jobz,"V") ? MAX(1,n) : 1;
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_w = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  w = NA_PTR_TYPE(rblapack_w, real*);
  {
    na_shape_t shape[2];
    shape[0] = ldz;
    shape[1] = n;
    rblapack_z = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
  }
  z = NA_PTR_TYPE(rblapack_z, complex*);
  {
    na_shape_t shape[2];
    shape[0] = ldab;
    shape[1] = n;
    rblapack_ab_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
  }
  ab_out__ = NA_PTR_TYPE(rblapack_ab_out__, complex*);
  MEMCPY(ab_out__, ab, complex, NA_TOTAL(rblapack_ab));
  rblapack_ab = rblapack_ab_out__;
  ab = ab_out__;
  work = ALLOC_N(complex, (n));
  rwork = ALLOC_N(real, (MAX(1,3*n-2)));

  chbev_(&jobz, &uplo, &n, &kd, ab, &ldab, w, z, &ldz, work, rwork, &info);

  free(work);
  free(rwork);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(4, rblapack_w, rblapack_z, rblapack_info, rblapack_ab);
}

void
init_lapack_chbev(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "chbev", rblapack_chbev, -1);
}