1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
#include "rb_lapack.h"
extern VOID chbgvd_(char* jobz, char* uplo, integer* n, integer* ka, integer* kb, complex* ab, integer* ldab, complex* bb, integer* ldbb, real* w, complex* z, integer* ldz, complex* work, integer* lwork, real* rwork, integer* lrwork, integer* iwork, integer* liwork, integer* info);
static VALUE
rblapack_chbgvd(int argc, VALUE *argv, VALUE self){
VALUE rblapack_jobz;
char jobz;
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_ka;
integer ka;
VALUE rblapack_kb;
integer kb;
VALUE rblapack_ab;
complex *ab;
VALUE rblapack_bb;
complex *bb;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_lrwork;
integer lrwork;
VALUE rblapack_liwork;
integer liwork;
VALUE rblapack_w;
real *w;
VALUE rblapack_z;
complex *z;
VALUE rblapack_work;
complex *work;
VALUE rblapack_rwork;
real *rwork;
VALUE rblapack_iwork;
integer *iwork;
VALUE rblapack_info;
integer info;
VALUE rblapack_ab_out__;
complex *ab_out__;
VALUE rblapack_bb_out__;
complex *bb_out__;
integer ldab;
integer n;
integer ldbb;
integer ldz;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n w, z, work, rwork, iwork, info, ab, bb = NumRu::Lapack.chbgvd( jobz, uplo, ka, kb, ab, bb, [:lwork => lwork, :lrwork => lrwork, :liwork => liwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CHBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )\n\n* Purpose\n* =======\n*\n* CHBGVD computes all the eigenvalues, and optionally, the eigenvectors\n* of a complex generalized Hermitian-definite banded eigenproblem, of\n* the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian\n* and banded, and B is also positive definite. If eigenvectors are\n* desired, it uses a divide and conquer algorithm.\n*\n* The divide and conquer algorithm makes very mild assumptions about\n* floating point arithmetic. It will work on machines with a guard\n* digit in add/subtract, or on those binary machines without guard\n* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or\n* Cray-2. It could conceivably fail on hexadecimal or decimal machines\n* without guard digits, but we know of none.\n*\n\n* Arguments\n* =========\n*\n* JOBZ (input) CHARACTER*1\n* = 'N': Compute eigenvalues only;\n* = 'V': Compute eigenvalues and eigenvectors.\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangles of A and B are stored;\n* = 'L': Lower triangles of A and B are stored.\n*\n* N (input) INTEGER\n* The order of the matrices A and B. N >= 0.\n*\n* KA (input) INTEGER\n* The number of superdiagonals of the matrix A if UPLO = 'U',\n* or the number of subdiagonals if UPLO = 'L'. KA >= 0.\n*\n* KB (input) INTEGER\n* The number of superdiagonals of the matrix B if UPLO = 'U',\n* or the number of subdiagonals if UPLO = 'L'. KB >= 0.\n*\n* AB (input/output) COMPLEX array, dimension (LDAB, N)\n* On entry, the upper or lower triangle of the Hermitian band\n* matrix A, stored in the first ka+1 rows of the array. The\n* j-th column of A is stored in the j-th column of the array AB\n* as follows:\n* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;\n* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).\n*\n* On exit, the contents of AB are destroyed.\n*\n* LDAB (input) INTEGER\n* The leading dimension of the array AB. LDAB >= KA+1.\n*\n* BB (input/output) COMPLEX array, dimension (LDBB, N)\n* On entry, the upper or lower triangle of the Hermitian band\n* matrix B, stored in the first kb+1 rows of the array. The\n* j-th column of B is stored in the j-th column of the array BB\n* as follows:\n* if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;\n* if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).\n*\n* On exit, the factor S from the split Cholesky factorization\n* B = S**H*S, as returned by CPBSTF.\n*\n* LDBB (input) INTEGER\n* The leading dimension of the array BB. LDBB >= KB+1.\n*\n* W (output) REAL array, dimension (N)\n* If INFO = 0, the eigenvalues in ascending order.\n*\n* Z (output) COMPLEX array, dimension (LDZ, N)\n* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of\n* eigenvectors, with the i-th column of Z holding the\n* eigenvector associated with W(i). The eigenvectors are\n* normalized so that Z**H*B*Z = I.\n* If JOBZ = 'N', then Z is not referenced.\n*\n* LDZ (input) INTEGER\n* The leading dimension of the array Z. LDZ >= 1, and if\n* JOBZ = 'V', LDZ >= N.\n*\n* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))\n* On exit, if INFO=0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK.\n* If N <= 1, LWORK >= 1.\n* If JOBZ = 'N' and N > 1, LWORK >= N.\n* If JOBZ = 'V' and N > 1, LWORK >= 2*N**2.\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal sizes of the WORK, RWORK and\n* IWORK arrays, returns these values as the first entries of\n* the WORK, RWORK and IWORK arrays, and no error message\n* related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n*\n* RWORK (workspace/output) REAL array, dimension (MAX(1,LRWORK))\n* On exit, if INFO=0, RWORK(1) returns the optimal LRWORK.\n*\n* LRWORK (input) INTEGER\n* The dimension of array RWORK.\n* If N <= 1, LRWORK >= 1.\n* If JOBZ = 'N' and N > 1, LRWORK >= N.\n* If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.\n*\n* If LRWORK = -1, then a workspace query is assumed; the\n* routine only calculates the optimal sizes of the WORK, RWORK\n* and IWORK arrays, returns these values as the first entries\n* of the WORK, RWORK and IWORK arrays, and no error message\n* related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n*\n* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))\n* On exit, if INFO=0, IWORK(1) returns the optimal LIWORK.\n*\n* LIWORK (input) INTEGER\n* The dimension of array IWORK.\n* If JOBZ = 'N' or N <= 1, LIWORK >= 1.\n* If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.\n*\n* If LIWORK = -1, then a workspace query is assumed; the\n* routine only calculates the optimal sizes of the WORK, RWORK\n* and IWORK arrays, returns these values as the first entries\n* of the WORK, RWORK and IWORK arrays, and no error message\n* related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: if INFO = i, and i is:\n* <= N: the algorithm failed to converge:\n* i off-diagonal elements of an intermediate\n* tridiagonal form did not converge to zero;\n* > N: if INFO = N + i, for 1 <= i <= N, then CPBSTF\n* returned INFO = i: B is not positive definite.\n* The factorization of B could not be completed and\n* no eigenvalues or eigenvectors were computed.\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n w, z, work, rwork, iwork, info, ab, bb = NumRu::Lapack.chbgvd( jobz, uplo, ka, kb, ab, bb, [:lwork => lwork, :lrwork => lrwork, :liwork => liwork, :usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 6 && argc != 9)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
rblapack_jobz = argv[0];
rblapack_uplo = argv[1];
rblapack_ka = argv[2];
rblapack_kb = argv[3];
rblapack_ab = argv[4];
rblapack_bb = argv[5];
if (argc == 9) {
rblapack_lwork = argv[6];
rblapack_lrwork = argv[7];
rblapack_liwork = argv[8];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
rblapack_lrwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lrwork")));
rblapack_liwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("liwork")));
} else {
rblapack_lwork = Qnil;
rblapack_lrwork = Qnil;
rblapack_liwork = Qnil;
}
jobz = StringValueCStr(rblapack_jobz)[0];
ka = NUM2INT(rblapack_ka);
if (!NA_IsNArray(rblapack_ab))
rb_raise(rb_eArgError, "ab (5th argument) must be NArray");
if (NA_RANK(rblapack_ab) != 2)
rb_raise(rb_eArgError, "rank of ab (5th argument) must be %d", 2);
ldab = NA_SHAPE0(rblapack_ab);
n = NA_SHAPE1(rblapack_ab);
if (NA_TYPE(rblapack_ab) != NA_SCOMPLEX)
rblapack_ab = na_change_type(rblapack_ab, NA_SCOMPLEX);
ab = NA_PTR_TYPE(rblapack_ab, complex*);
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_bb))
rb_raise(rb_eArgError, "bb (6th argument) must be NArray");
if (NA_RANK(rblapack_bb) != 2)
rb_raise(rb_eArgError, "rank of bb (6th argument) must be %d", 2);
ldbb = NA_SHAPE0(rblapack_bb);
if (NA_SHAPE1(rblapack_bb) != n)
rb_raise(rb_eRuntimeError, "shape 1 of bb must be the same as shape 1 of ab");
if (NA_TYPE(rblapack_bb) != NA_SCOMPLEX)
rblapack_bb = na_change_type(rblapack_bb, NA_SCOMPLEX);
bb = NA_PTR_TYPE(rblapack_bb, complex*);
if (rblapack_lrwork == Qnil)
lrwork = n<=1 ? 1 : lsame_(&jobz,"N") ? n : lsame_(&jobz,"V") ? 1+5*n+2*n*n : 0;
else {
lrwork = NUM2INT(rblapack_lrwork);
}
ldz = lsame_(&jobz,"V") ? n : 1;
kb = NUM2INT(rblapack_kb);
if (rblapack_liwork == Qnil)
liwork = n<=1 ? 1 : lsame_(&jobz,"N") ? 1 : lsame_(&jobz,"V") ? 3+5*n : 0;
else {
liwork = NUM2INT(rblapack_liwork);
}
if (rblapack_lwork == Qnil)
lwork = n<=1 ? 1 : lsame_(&jobz,"N") ? n : lsame_(&jobz,"V") ? 2*n*n : 0;
else {
lwork = NUM2INT(rblapack_lwork);
}
{
na_shape_t shape[1];
shape[0] = n;
rblapack_w = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
w = NA_PTR_TYPE(rblapack_w, real*);
{
na_shape_t shape[2];
shape[0] = ldz;
shape[1] = n;
rblapack_z = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
z = NA_PTR_TYPE(rblapack_z, complex*);
{
na_shape_t shape[1];
shape[0] = MAX(1,lwork);
rblapack_work = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
}
work = NA_PTR_TYPE(rblapack_work, complex*);
{
na_shape_t shape[1];
shape[0] = MAX(1,lrwork);
rblapack_rwork = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
rwork = NA_PTR_TYPE(rblapack_rwork, real*);
{
na_shape_t shape[1];
shape[0] = MAX(1,liwork);
rblapack_iwork = na_make_object(NA_LINT, 1, shape, cNArray);
}
iwork = NA_PTR_TYPE(rblapack_iwork, integer*);
{
na_shape_t shape[2];
shape[0] = ldab;
shape[1] = n;
rblapack_ab_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
ab_out__ = NA_PTR_TYPE(rblapack_ab_out__, complex*);
MEMCPY(ab_out__, ab, complex, NA_TOTAL(rblapack_ab));
rblapack_ab = rblapack_ab_out__;
ab = ab_out__;
{
na_shape_t shape[2];
shape[0] = ldbb;
shape[1] = n;
rblapack_bb_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
bb_out__ = NA_PTR_TYPE(rblapack_bb_out__, complex*);
MEMCPY(bb_out__, bb, complex, NA_TOTAL(rblapack_bb));
rblapack_bb = rblapack_bb_out__;
bb = bb_out__;
chbgvd_(&jobz, &uplo, &n, &ka, &kb, ab, &ldab, bb, &ldbb, w, z, &ldz, work, &lwork, rwork, &lrwork, iwork, &liwork, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(8, rblapack_w, rblapack_z, rblapack_work, rblapack_rwork, rblapack_iwork, rblapack_info, rblapack_ab, rblapack_bb);
}
void
init_lapack_chbgvd(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "chbgvd", rblapack_chbgvd, -1);
}
|