File: chegv.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (140 lines) | stat: -rw-r--r-- 8,590 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#include "rb_lapack.h"

extern VOID chegv_(integer* itype, char* jobz, char* uplo, integer* n, complex* a, integer* lda, complex* b, integer* ldb, real* w, complex* work, integer* lwork, real* rwork, integer* info);


static VALUE
rblapack_chegv(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_itype;
  integer itype; 
  VALUE rblapack_jobz;
  char jobz; 
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_a;
  complex *a; 
  VALUE rblapack_b;
  complex *b; 
  VALUE rblapack_lwork;
  integer lwork; 
  VALUE rblapack_w;
  real *w; 
  VALUE rblapack_work;
  complex *work; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_a_out__;
  complex *a_out__;
  VALUE rblapack_b_out__;
  complex *b_out__;
  real *rwork;

  integer lda;
  integer n;
  integer ldb;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  w, work, info, a, b = NumRu::Lapack.chegv( itype, jobz, uplo, a, b, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE CHEGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK, RWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  CHEGV computes all the eigenvalues, and optionally, the eigenvectors\n*  of a complex generalized Hermitian-definite eigenproblem, of the form\n*  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.\n*  Here A and B are assumed to be Hermitian and B is also\n*  positive definite.\n*\n\n*  Arguments\n*  =========\n*\n*  ITYPE   (input) INTEGER\n*          Specifies the problem type to be solved:\n*          = 1:  A*x = (lambda)*B*x\n*          = 2:  A*B*x = (lambda)*x\n*          = 3:  B*A*x = (lambda)*x\n*\n*  JOBZ    (input) CHARACTER*1\n*          = 'N':  Compute eigenvalues only;\n*          = 'V':  Compute eigenvalues and eigenvectors.\n*\n*  UPLO    (input) CHARACTER*1\n*          = 'U':  Upper triangles of A and B are stored;\n*          = 'L':  Lower triangles of A and B are stored.\n*\n*  N       (input) INTEGER\n*          The order of the matrices A and B.  N >= 0.\n*\n*  A       (input/output) COMPLEX array, dimension (LDA, N)\n*          On entry, the Hermitian matrix A.  If UPLO = 'U', the\n*          leading N-by-N upper triangular part of A contains the\n*          upper triangular part of the matrix A.  If UPLO = 'L',\n*          the leading N-by-N lower triangular part of A contains\n*          the lower triangular part of the matrix A.\n*\n*          On exit, if JOBZ = 'V', then if INFO = 0, A contains the\n*          matrix Z of eigenvectors.  The eigenvectors are normalized\n*          as follows:\n*          if ITYPE = 1 or 2, Z**H*B*Z = I;\n*          if ITYPE = 3, Z**H*inv(B)*Z = I.\n*          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')\n*          or the lower triangle (if UPLO='L') of A, including the\n*          diagonal, is destroyed.\n*\n*  LDA     (input) INTEGER\n*          The leading dimension of the array A.  LDA >= max(1,N).\n*\n*  B       (input/output) COMPLEX array, dimension (LDB, N)\n*          On entry, the Hermitian positive definite matrix B.\n*          If UPLO = 'U', the leading N-by-N upper triangular part of B\n*          contains the upper triangular part of the matrix B.\n*          If UPLO = 'L', the leading N-by-N lower triangular part of B\n*          contains the lower triangular part of the matrix B.\n*\n*          On exit, if INFO <= N, the part of B containing the matrix is\n*          overwritten by the triangular factor U or L from the Cholesky\n*          factorization B = U**H*U or B = L*L**H.\n*\n*  LDB     (input) INTEGER\n*          The leading dimension of the array B.  LDB >= max(1,N).\n*\n*  W       (output) REAL array, dimension (N)\n*          If INFO = 0, the eigenvalues in ascending order.\n*\n*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))\n*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n*  LWORK   (input) INTEGER\n*          The length of the array WORK.  LWORK >= max(1,2*N-1).\n*          For optimal efficiency, LWORK >= (NB+1)*N,\n*          where NB is the blocksize for CHETRD returned by ILAENV.\n*\n*          If LWORK = -1, then a workspace query is assumed; the routine\n*          only calculates the optimal size of the WORK array, returns\n*          this value as the first entry of the WORK array, and no error\n*          message related to LWORK is issued by XERBLA.\n*\n*  RWORK   (workspace) REAL array, dimension (max(1, 3*N-2))\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value\n*          > 0:  CPOTRF or CHEEV returned an error code:\n*             <= N:  if INFO = i, CHEEV failed to converge;\n*                    i off-diagonal elements of an intermediate\n*                    tridiagonal form did not converge to zero;\n*             > N:   if INFO = N + i, for 1 <= i <= N, then the leading\n*                    minor of order i of B is not positive definite.\n*                    The factorization of B could not be completed and\n*                    no eigenvalues or eigenvectors were computed.\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  w, work, info, a, b = NumRu::Lapack.chegv( itype, jobz, uplo, a, b, [:lwork => lwork, :usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 5 && argc != 6)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
  rblapack_itype = argv[0];
  rblapack_jobz = argv[1];
  rblapack_uplo = argv[2];
  rblapack_a = argv[3];
  rblapack_b = argv[4];
  if (argc == 6) {
    rblapack_lwork = argv[5];
  } else if (rblapack_options != Qnil) {
    rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
  } else {
    rblapack_lwork = Qnil;
  }

  itype = NUM2INT(rblapack_itype);
  uplo = StringValueCStr(rblapack_uplo)[0];
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (5th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (5th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  n = NA_SHAPE1(rblapack_b);
  if (NA_TYPE(rblapack_b) != NA_SCOMPLEX)
    rblapack_b = na_change_type(rblapack_b, NA_SCOMPLEX);
  b = NA_PTR_TYPE(rblapack_b, complex*);
  jobz = StringValueCStr(rblapack_jobz)[0];
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (4th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (4th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  if (NA_SHAPE1(rblapack_a) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of a must be the same as shape 1 of b");
  if (NA_TYPE(rblapack_a) != NA_SCOMPLEX)
    rblapack_a = na_change_type(rblapack_a, NA_SCOMPLEX);
  a = NA_PTR_TYPE(rblapack_a, complex*);
  if (rblapack_lwork == Qnil)
    lwork = 2*n-1;
  else {
    lwork = NUM2INT(rblapack_lwork);
  }
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_w = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  w = NA_PTR_TYPE(rblapack_w, real*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,lwork);
    rblapack_work = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
  }
  work = NA_PTR_TYPE(rblapack_work, complex*);
  {
    na_shape_t shape[2];
    shape[0] = lda;
    shape[1] = n;
    rblapack_a_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
  }
  a_out__ = NA_PTR_TYPE(rblapack_a_out__, complex*);
  MEMCPY(a_out__, a, complex, NA_TOTAL(rblapack_a));
  rblapack_a = rblapack_a_out__;
  a = a_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldb;
    shape[1] = n;
    rblapack_b_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
  }
  b_out__ = NA_PTR_TYPE(rblapack_b_out__, complex*);
  MEMCPY(b_out__, b, complex, NA_TOTAL(rblapack_b));
  rblapack_b = rblapack_b_out__;
  b = b_out__;
  rwork = ALLOC_N(real, (MAX(1, 3*n-2)));

  chegv_(&itype, &jobz, &uplo, &n, a, &lda, b, &ldb, w, work, &lwork, rwork, &info);

  free(rwork);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(5, rblapack_w, rblapack_work, rblapack_info, rblapack_a, rblapack_b);
}

void
init_lapack_chegv(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "chegv", rblapack_chegv, -1);
}