1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
#include "rb_lapack.h"
extern VOID chegv_(integer* itype, char* jobz, char* uplo, integer* n, complex* a, integer* lda, complex* b, integer* ldb, real* w, complex* work, integer* lwork, real* rwork, integer* info);
static VALUE
rblapack_chegv(int argc, VALUE *argv, VALUE self){
VALUE rblapack_itype;
integer itype;
VALUE rblapack_jobz;
char jobz;
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_a;
complex *a;
VALUE rblapack_b;
complex *b;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_w;
real *w;
VALUE rblapack_work;
complex *work;
VALUE rblapack_info;
integer info;
VALUE rblapack_a_out__;
complex *a_out__;
VALUE rblapack_b_out__;
complex *b_out__;
real *rwork;
integer lda;
integer n;
integer ldb;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n w, work, info, a, b = NumRu::Lapack.chegv( itype, jobz, uplo, a, b, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CHEGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK, RWORK, INFO )\n\n* Purpose\n* =======\n*\n* CHEGV computes all the eigenvalues, and optionally, the eigenvectors\n* of a complex generalized Hermitian-definite eigenproblem, of the form\n* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.\n* Here A and B are assumed to be Hermitian and B is also\n* positive definite.\n*\n\n* Arguments\n* =========\n*\n* ITYPE (input) INTEGER\n* Specifies the problem type to be solved:\n* = 1: A*x = (lambda)*B*x\n* = 2: A*B*x = (lambda)*x\n* = 3: B*A*x = (lambda)*x\n*\n* JOBZ (input) CHARACTER*1\n* = 'N': Compute eigenvalues only;\n* = 'V': Compute eigenvalues and eigenvectors.\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangles of A and B are stored;\n* = 'L': Lower triangles of A and B are stored.\n*\n* N (input) INTEGER\n* The order of the matrices A and B. N >= 0.\n*\n* A (input/output) COMPLEX array, dimension (LDA, N)\n* On entry, the Hermitian matrix A. If UPLO = 'U', the\n* leading N-by-N upper triangular part of A contains the\n* upper triangular part of the matrix A. If UPLO = 'L',\n* the leading N-by-N lower triangular part of A contains\n* the lower triangular part of the matrix A.\n*\n* On exit, if JOBZ = 'V', then if INFO = 0, A contains the\n* matrix Z of eigenvectors. The eigenvectors are normalized\n* as follows:\n* if ITYPE = 1 or 2, Z**H*B*Z = I;\n* if ITYPE = 3, Z**H*inv(B)*Z = I.\n* If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')\n* or the lower triangle (if UPLO='L') of A, including the\n* diagonal, is destroyed.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* B (input/output) COMPLEX array, dimension (LDB, N)\n* On entry, the Hermitian positive definite matrix B.\n* If UPLO = 'U', the leading N-by-N upper triangular part of B\n* contains the upper triangular part of the matrix B.\n* If UPLO = 'L', the leading N-by-N lower triangular part of B\n* contains the lower triangular part of the matrix B.\n*\n* On exit, if INFO <= N, the part of B containing the matrix is\n* overwritten by the triangular factor U or L from the Cholesky\n* factorization B = U**H*U or B = L*L**H.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,N).\n*\n* W (output) REAL array, dimension (N)\n* If INFO = 0, the eigenvalues in ascending order.\n*\n* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))\n* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The length of the array WORK. LWORK >= max(1,2*N-1).\n* For optimal efficiency, LWORK >= (NB+1)*N,\n* where NB is the blocksize for CHETRD returned by ILAENV.\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal size of the WORK array, returns\n* this value as the first entry of the WORK array, and no error\n* message related to LWORK is issued by XERBLA.\n*\n* RWORK (workspace) REAL array, dimension (max(1, 3*N-2))\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: CPOTRF or CHEEV returned an error code:\n* <= N: if INFO = i, CHEEV failed to converge;\n* i off-diagonal elements of an intermediate\n* tridiagonal form did not converge to zero;\n* > N: if INFO = N + i, for 1 <= i <= N, then the leading\n* minor of order i of B is not positive definite.\n* The factorization of B could not be completed and\n* no eigenvalues or eigenvectors were computed.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n w, work, info, a, b = NumRu::Lapack.chegv( itype, jobz, uplo, a, b, [:lwork => lwork, :usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 5 && argc != 6)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
rblapack_itype = argv[0];
rblapack_jobz = argv[1];
rblapack_uplo = argv[2];
rblapack_a = argv[3];
rblapack_b = argv[4];
if (argc == 6) {
rblapack_lwork = argv[5];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
} else {
rblapack_lwork = Qnil;
}
itype = NUM2INT(rblapack_itype);
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (5th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (5th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
n = NA_SHAPE1(rblapack_b);
if (NA_TYPE(rblapack_b) != NA_SCOMPLEX)
rblapack_b = na_change_type(rblapack_b, NA_SCOMPLEX);
b = NA_PTR_TYPE(rblapack_b, complex*);
jobz = StringValueCStr(rblapack_jobz)[0];
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (4th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (4th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
if (NA_SHAPE1(rblapack_a) != n)
rb_raise(rb_eRuntimeError, "shape 1 of a must be the same as shape 1 of b");
if (NA_TYPE(rblapack_a) != NA_SCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_SCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, complex*);
if (rblapack_lwork == Qnil)
lwork = 2*n-1;
else {
lwork = NUM2INT(rblapack_lwork);
}
{
na_shape_t shape[1];
shape[0] = n;
rblapack_w = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
w = NA_PTR_TYPE(rblapack_w, real*);
{
na_shape_t shape[1];
shape[0] = MAX(1,lwork);
rblapack_work = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
}
work = NA_PTR_TYPE(rblapack_work, complex*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, complex*);
MEMCPY(a_out__, a, complex, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
{
na_shape_t shape[2];
shape[0] = ldb;
shape[1] = n;
rblapack_b_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
b_out__ = NA_PTR_TYPE(rblapack_b_out__, complex*);
MEMCPY(b_out__, b, complex, NA_TOTAL(rblapack_b));
rblapack_b = rblapack_b_out__;
b = b_out__;
rwork = ALLOC_N(real, (MAX(1, 3*n-2)));
chegv_(&itype, &jobz, &uplo, &n, a, &lda, b, &ldb, w, work, &lwork, rwork, &info);
free(rwork);
rblapack_info = INT2NUM(info);
return rb_ary_new3(5, rblapack_w, rblapack_work, rblapack_info, rblapack_a, rblapack_b);
}
void
init_lapack_chegv(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "chegv", rblapack_chegv, -1);
}
|