1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
#include "rb_lapack.h"
extern VOID cherfs_(char* uplo, integer* n, integer* nrhs, complex* a, integer* lda, complex* af, integer* ldaf, integer* ipiv, complex* b, integer* ldb, complex* x, integer* ldx, real* ferr, real* berr, complex* work, real* rwork, integer* info);
static VALUE
rblapack_cherfs(int argc, VALUE *argv, VALUE self){
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_a;
complex *a;
VALUE rblapack_af;
complex *af;
VALUE rblapack_ipiv;
integer *ipiv;
VALUE rblapack_b;
complex *b;
VALUE rblapack_x;
complex *x;
VALUE rblapack_ferr;
real *ferr;
VALUE rblapack_berr;
real *berr;
VALUE rblapack_info;
integer info;
VALUE rblapack_x_out__;
complex *x_out__;
complex *work;
real *rwork;
integer lda;
integer n;
integer ldaf;
integer ldb;
integer nrhs;
integer ldx;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n ferr, berr, info, x = NumRu::Lapack.cherfs( uplo, a, af, ipiv, b, x, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CHERFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )\n\n* Purpose\n* =======\n*\n* CHERFS improves the computed solution to a system of linear\n* equations when the coefficient matrix is Hermitian indefinite, and\n* provides error bounds and backward error estimates for the solution.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangle of A is stored;\n* = 'L': Lower triangle of A is stored.\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* NRHS (input) INTEGER\n* The number of right hand sides, i.e., the number of columns\n* of the matrices B and X. NRHS >= 0.\n*\n* A (input) COMPLEX array, dimension (LDA,N)\n* The Hermitian matrix A. If UPLO = 'U', the leading N-by-N\n* upper triangular part of A contains the upper triangular part\n* of the matrix A, and the strictly lower triangular part of A\n* is not referenced. If UPLO = 'L', the leading N-by-N lower\n* triangular part of A contains the lower triangular part of\n* the matrix A, and the strictly upper triangular part of A is\n* not referenced.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* AF (input) COMPLEX array, dimension (LDAF,N)\n* The factored form of the matrix A. AF contains the block\n* diagonal matrix D and the multipliers used to obtain the\n* factor U or L from the factorization A = U*D*U**H or\n* A = L*D*L**H as computed by CHETRF.\n*\n* LDAF (input) INTEGER\n* The leading dimension of the array AF. LDAF >= max(1,N).\n*\n* IPIV (input) INTEGER array, dimension (N)\n* Details of the interchanges and the block structure of D\n* as determined by CHETRF.\n*\n* B (input) COMPLEX array, dimension (LDB,NRHS)\n* The right hand side matrix B.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,N).\n*\n* X (input/output) COMPLEX array, dimension (LDX,NRHS)\n* On entry, the solution matrix X, as computed by CHETRS.\n* On exit, the improved solution matrix X.\n*\n* LDX (input) INTEGER\n* The leading dimension of the array X. LDX >= max(1,N).\n*\n* FERR (output) REAL array, dimension (NRHS)\n* The estimated forward error bound for each solution vector\n* X(j) (the j-th column of the solution matrix X).\n* If XTRUE is the true solution corresponding to X(j), FERR(j)\n* is an estimated upper bound for the magnitude of the largest\n* element in (X(j) - XTRUE) divided by the magnitude of the\n* largest element in X(j). The estimate is as reliable as\n* the estimate for RCOND, and is almost always a slight\n* overestimate of the true error.\n*\n* BERR (output) REAL array, dimension (NRHS)\n* The componentwise relative backward error of each solution\n* vector X(j) (i.e., the smallest relative change in\n* any element of A or B that makes X(j) an exact solution).\n*\n* WORK (workspace) COMPLEX array, dimension (2*N)\n*\n* RWORK (workspace) REAL array, dimension (N)\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n* Internal Parameters\n* ===================\n*\n* ITMAX is the maximum number of steps of iterative refinement.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n ferr, berr, info, x = NumRu::Lapack.cherfs( uplo, a, af, ipiv, b, x, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 6 && argc != 6)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
rblapack_uplo = argv[0];
rblapack_a = argv[1];
rblapack_af = argv[2];
rblapack_ipiv = argv[3];
rblapack_b = argv[4];
rblapack_x = argv[5];
if (argc == 6) {
} else if (rblapack_options != Qnil) {
} else {
}
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_af))
rb_raise(rb_eArgError, "af (3th argument) must be NArray");
if (NA_RANK(rblapack_af) != 2)
rb_raise(rb_eArgError, "rank of af (3th argument) must be %d", 2);
ldaf = NA_SHAPE0(rblapack_af);
n = NA_SHAPE1(rblapack_af);
if (NA_TYPE(rblapack_af) != NA_SCOMPLEX)
rblapack_af = na_change_type(rblapack_af, NA_SCOMPLEX);
af = NA_PTR_TYPE(rblapack_af, complex*);
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (5th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (5th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
nrhs = NA_SHAPE1(rblapack_b);
if (NA_TYPE(rblapack_b) != NA_SCOMPLEX)
rblapack_b = na_change_type(rblapack_b, NA_SCOMPLEX);
b = NA_PTR_TYPE(rblapack_b, complex*);
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (2th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (2th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
if (NA_SHAPE1(rblapack_a) != n)
rb_raise(rb_eRuntimeError, "shape 1 of a must be the same as shape 1 of af");
if (NA_TYPE(rblapack_a) != NA_SCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_SCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, complex*);
if (!NA_IsNArray(rblapack_x))
rb_raise(rb_eArgError, "x (6th argument) must be NArray");
if (NA_RANK(rblapack_x) != 2)
rb_raise(rb_eArgError, "rank of x (6th argument) must be %d", 2);
ldx = NA_SHAPE0(rblapack_x);
if (NA_SHAPE1(rblapack_x) != nrhs)
rb_raise(rb_eRuntimeError, "shape 1 of x must be the same as shape 1 of b");
if (NA_TYPE(rblapack_x) != NA_SCOMPLEX)
rblapack_x = na_change_type(rblapack_x, NA_SCOMPLEX);
x = NA_PTR_TYPE(rblapack_x, complex*);
if (!NA_IsNArray(rblapack_ipiv))
rb_raise(rb_eArgError, "ipiv (4th argument) must be NArray");
if (NA_RANK(rblapack_ipiv) != 1)
rb_raise(rb_eArgError, "rank of ipiv (4th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_ipiv) != n)
rb_raise(rb_eRuntimeError, "shape 0 of ipiv must be the same as shape 1 of af");
if (NA_TYPE(rblapack_ipiv) != NA_LINT)
rblapack_ipiv = na_change_type(rblapack_ipiv, NA_LINT);
ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
{
na_shape_t shape[1];
shape[0] = nrhs;
rblapack_ferr = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
ferr = NA_PTR_TYPE(rblapack_ferr, real*);
{
na_shape_t shape[1];
shape[0] = nrhs;
rblapack_berr = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
berr = NA_PTR_TYPE(rblapack_berr, real*);
{
na_shape_t shape[2];
shape[0] = ldx;
shape[1] = nrhs;
rblapack_x_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
x_out__ = NA_PTR_TYPE(rblapack_x_out__, complex*);
MEMCPY(x_out__, x, complex, NA_TOTAL(rblapack_x));
rblapack_x = rblapack_x_out__;
x = x_out__;
work = ALLOC_N(complex, (2*n));
rwork = ALLOC_N(real, (n));
cherfs_(&uplo, &n, &nrhs, a, &lda, af, &ldaf, ipiv, b, &ldb, x, &ldx, ferr, berr, work, rwork, &info);
free(work);
free(rwork);
rblapack_info = INT2NUM(info);
return rb_ary_new3(4, rblapack_ferr, rblapack_berr, rblapack_info, rblapack_x);
}
void
init_lapack_cherfs(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "cherfs", rblapack_cherfs, -1);
}
|