1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
|
#include "rb_lapack.h"
extern VOID chetf2_(char* uplo, integer* n, complex* a, integer* lda, integer* ipiv, integer* info);
static VALUE
rblapack_chetf2(int argc, VALUE *argv, VALUE self){
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_a;
complex *a;
VALUE rblapack_ipiv;
integer *ipiv;
VALUE rblapack_info;
integer info;
VALUE rblapack_a_out__;
complex *a_out__;
integer lda;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n ipiv, info, a = NumRu::Lapack.chetf2( uplo, a, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CHETF2( UPLO, N, A, LDA, IPIV, INFO )\n\n* Purpose\n* =======\n*\n* CHETF2 computes the factorization of a complex Hermitian matrix A\n* using the Bunch-Kaufman diagonal pivoting method:\n*\n* A = U*D*U' or A = L*D*L'\n*\n* where U (or L) is a product of permutation and unit upper (lower)\n* triangular matrices, U' is the conjugate transpose of U, and D is\n* Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.\n*\n* This is the unblocked version of the algorithm, calling Level 2 BLAS.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* Specifies whether the upper or lower triangular part of the\n* Hermitian matrix A is stored:\n* = 'U': Upper triangular\n* = 'L': Lower triangular\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* A (input/output) COMPLEX array, dimension (LDA,N)\n* On entry, the Hermitian matrix A. If UPLO = 'U', the leading\n* n-by-n upper triangular part of A contains the upper\n* triangular part of the matrix A, and the strictly lower\n* triangular part of A is not referenced. If UPLO = 'L', the\n* leading n-by-n lower triangular part of A contains the lower\n* triangular part of the matrix A, and the strictly upper\n* triangular part of A is not referenced.\n*\n* On exit, the block diagonal matrix D and the multipliers used\n* to obtain the factor U or L (see below for further details).\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* IPIV (output) INTEGER array, dimension (N)\n* Details of the interchanges and the block structure of D.\n* If IPIV(k) > 0, then rows and columns k and IPIV(k) were\n* interchanged and D(k,k) is a 1-by-1 diagonal block.\n* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and\n* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)\n* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =\n* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were\n* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -k, the k-th argument had an illegal value\n* > 0: if INFO = k, D(k,k) is exactly zero. The factorization\n* has been completed, but the block diagonal matrix D is\n* exactly singular, and division by zero will occur if it\n* is used to solve a system of equations.\n*\n\n* Further Details\n* ===============\n*\n* 09-29-06 - patch from\n* Bobby Cheng, MathWorks\n*\n* Replace l.210 and l.392\n* IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN\n* by\n* IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. SISNAN(ABSAKK) ) THEN\n*\n* 01-01-96 - Based on modifications by\n* J. Lewis, Boeing Computer Services Company\n* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA\n*\n* If UPLO = 'U', then A = U*D*U', where\n* U = P(n)*U(n)* ... *P(k)U(k)* ...,\n* i.e., U is a product of terms P(k)*U(k), where k decreases from n to\n* 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1\n* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as\n* defined by IPIV(k), and U(k) is a unit upper triangular matrix, such\n* that if the diagonal block D(k) is of order s (s = 1 or 2), then\n*\n* ( I v 0 ) k-s\n* U(k) = ( 0 I 0 ) s\n* ( 0 0 I ) n-k\n* k-s s n-k\n*\n* If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).\n* If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),\n* and A(k,k), and v overwrites A(1:k-2,k-1:k).\n*\n* If UPLO = 'L', then A = L*D*L', where\n* L = P(1)*L(1)* ... *P(k)*L(k)* ...,\n* i.e., L is a product of terms P(k)*L(k), where k increases from 1 to\n* n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1\n* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as\n* defined by IPIV(k), and L(k) is a unit lower triangular matrix, such\n* that if the diagonal block D(k) is of order s (s = 1 or 2), then\n*\n* ( I 0 0 ) k-1\n* L(k) = ( 0 I 0 ) s\n* ( 0 v I ) n-k-s+1\n* k-1 s n-k-s+1\n*\n* If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).\n* If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),\n* and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n ipiv, info, a = NumRu::Lapack.chetf2( uplo, a, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 2 && argc != 2)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 2)", argc);
rblapack_uplo = argv[0];
rblapack_a = argv[1];
if (argc == 2) {
} else if (rblapack_options != Qnil) {
} else {
}
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (2th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (2th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_SCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_SCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, complex*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_ipiv = na_make_object(NA_LINT, 1, shape, cNArray);
}
ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, complex*);
MEMCPY(a_out__, a, complex, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
chetf2_(&uplo, &n, a, &lda, ipiv, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(3, rblapack_ipiv, rblapack_info, rblapack_a);
}
void
init_lapack_chetf2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "chetf2", rblapack_chetf2, -1);
}
|