File: chetrs2.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (106 lines) | stat: -rw-r--r-- 5,278 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#include "rb_lapack.h"

extern VOID chetrs2_(char* uplo, integer* n, integer* nrhs, complex* a, integer* lda, integer* ipiv, complex* b, integer* ldb, complex* work, integer* info);


static VALUE
rblapack_chetrs2(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_a;
  complex *a; 
  VALUE rblapack_ipiv;
  integer *ipiv; 
  VALUE rblapack_b;
  complex *b; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_b_out__;
  complex *b_out__;
  complex *work;

  integer lda;
  integer n;
  integer ldb;
  integer nrhs;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, b = NumRu::Lapack.chetrs2( uplo, a, ipiv, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE CHETRS2( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,  WORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  CHETRS2 solves a system of linear equations A*X = B with a COMPLEX\n*  Hermitian matrix A using the factorization A = U*D*U**T or\n*  A = L*D*L**T computed by CSYTRF and converted by CSYCONV.\n*\n\n*  Arguments\n*  =========\n*\n*  UPLO    (input) CHARACTER*1\n*          Specifies whether the details of the factorization are stored\n*          as an upper or lower triangular matrix.\n*          = 'U':  Upper triangular, form is A = U*D*U**H;\n*          = 'L':  Lower triangular, form is A = L*D*L**H.\n*\n*  N       (input) INTEGER\n*          The order of the matrix A.  N >= 0.\n*\n*  NRHS    (input) INTEGER\n*          The number of right hand sides, i.e., the number of columns\n*          of the matrix B.  NRHS >= 0.\n*\n*  A       (input) COMPLEX array, dimension (LDA,N)\n*          The block diagonal matrix D and the multipliers used to\n*          obtain the factor U or L as computed by CHETRF.\n*\n*  LDA     (input) INTEGER\n*          The leading dimension of the array A.  LDA >= max(1,N).\n*\n*  IPIV    (input) INTEGER array, dimension (N)\n*          Details of the interchanges and the block structure of D\n*          as determined by CHETRF.\n*\n*  B       (input/output) COMPLEX array, dimension (LDB,NRHS)\n*          On entry, the right hand side matrix B.\n*          On exit, the solution matrix X.\n*\n*  LDB     (input) INTEGER\n*          The leading dimension of the array B.  LDB >= max(1,N).\n*\n*  WORK    (workspace) COMPLEX array, dimension (N)\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, b = NumRu::Lapack.chetrs2( uplo, a, ipiv, b, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 4 && argc != 4)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
  rblapack_uplo = argv[0];
  rblapack_a = argv[1];
  rblapack_ipiv = argv[2];
  rblapack_b = argv[3];
  if (argc == 4) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  uplo = StringValueCStr(rblapack_uplo)[0];
  if (!NA_IsNArray(rblapack_ipiv))
    rb_raise(rb_eArgError, "ipiv (3th argument) must be NArray");
  if (NA_RANK(rblapack_ipiv) != 1)
    rb_raise(rb_eArgError, "rank of ipiv (3th argument) must be %d", 1);
  n = NA_SHAPE0(rblapack_ipiv);
  if (NA_TYPE(rblapack_ipiv) != NA_LINT)
    rblapack_ipiv = na_change_type(rblapack_ipiv, NA_LINT);
  ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (2th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (2th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  if (NA_SHAPE1(rblapack_a) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of a must be the same as shape 0 of ipiv");
  if (NA_TYPE(rblapack_a) != NA_SCOMPLEX)
    rblapack_a = na_change_type(rblapack_a, NA_SCOMPLEX);
  a = NA_PTR_TYPE(rblapack_a, complex*);
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (4th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (4th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  nrhs = NA_SHAPE1(rblapack_b);
  if (NA_TYPE(rblapack_b) != NA_SCOMPLEX)
    rblapack_b = na_change_type(rblapack_b, NA_SCOMPLEX);
  b = NA_PTR_TYPE(rblapack_b, complex*);
  {
    na_shape_t shape[2];
    shape[0] = ldb;
    shape[1] = nrhs;
    rblapack_b_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
  }
  b_out__ = NA_PTR_TYPE(rblapack_b_out__, complex*);
  MEMCPY(b_out__, b, complex, NA_TOTAL(rblapack_b));
  rblapack_b = rblapack_b_out__;
  b = b_out__;
  work = ALLOC_N(complex, (n));

  chetrs2_(&uplo, &n, &nrhs, a, &lda, ipiv, b, &ldb, work, &info);

  free(work);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(2, rblapack_info, rblapack_b);
}

void
init_lapack_chetrs2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "chetrs2", rblapack_chetrs2, -1);
}