1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
|
#include "rb_lapack.h"
extern VOID chptri_(char* uplo, integer* n, complex* ap, integer* ipiv, complex* work, integer* info);
static VALUE
rblapack_chptri(int argc, VALUE *argv, VALUE self){
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_ap;
complex *ap;
VALUE rblapack_ipiv;
integer *ipiv;
VALUE rblapack_info;
integer info;
VALUE rblapack_ap_out__;
complex *ap_out__;
complex *work;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n info, ap = NumRu::Lapack.chptri( uplo, ap, ipiv, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CHPTRI( UPLO, N, AP, IPIV, WORK, INFO )\n\n* Purpose\n* =======\n*\n* CHPTRI computes the inverse of a complex Hermitian indefinite matrix\n* A in packed storage using the factorization A = U*D*U**H or\n* A = L*D*L**H computed by CHPTRF.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* Specifies whether the details of the factorization are stored\n* as an upper or lower triangular matrix.\n* = 'U': Upper triangular, form is A = U*D*U**H;\n* = 'L': Lower triangular, form is A = L*D*L**H.\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* AP (input/output) COMPLEX array, dimension (N*(N+1)/2)\n* On entry, the block diagonal matrix D and the multipliers\n* used to obtain the factor U or L as computed by CHPTRF,\n* stored as a packed triangular matrix.\n*\n* On exit, if INFO = 0, the (Hermitian) inverse of the original\n* matrix, stored as a packed triangular matrix. The j-th column\n* of inv(A) is stored in the array AP as follows:\n* if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;\n* if UPLO = 'L',\n* AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.\n*\n* IPIV (input) INTEGER array, dimension (N)\n* Details of the interchanges and the block structure of D\n* as determined by CHPTRF.\n*\n* WORK (workspace) COMPLEX array, dimension (N)\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its\n* inverse could not be computed.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n info, ap = NumRu::Lapack.chptri( uplo, ap, ipiv, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 3 && argc != 3)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
rblapack_uplo = argv[0];
rblapack_ap = argv[1];
rblapack_ipiv = argv[2];
if (argc == 3) {
} else if (rblapack_options != Qnil) {
} else {
}
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_ipiv))
rb_raise(rb_eArgError, "ipiv (3th argument) must be NArray");
if (NA_RANK(rblapack_ipiv) != 1)
rb_raise(rb_eArgError, "rank of ipiv (3th argument) must be %d", 1);
n = NA_SHAPE0(rblapack_ipiv);
if (NA_TYPE(rblapack_ipiv) != NA_LINT)
rblapack_ipiv = na_change_type(rblapack_ipiv, NA_LINT);
ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
if (!NA_IsNArray(rblapack_ap))
rb_raise(rb_eArgError, "ap (2th argument) must be NArray");
if (NA_RANK(rblapack_ap) != 1)
rb_raise(rb_eArgError, "rank of ap (2th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_ap) != (n*(n+1)/2))
rb_raise(rb_eRuntimeError, "shape 0 of ap must be %d", n*(n+1)/2);
if (NA_TYPE(rblapack_ap) != NA_SCOMPLEX)
rblapack_ap = na_change_type(rblapack_ap, NA_SCOMPLEX);
ap = NA_PTR_TYPE(rblapack_ap, complex*);
{
na_shape_t shape[1];
shape[0] = n*(n+1)/2;
rblapack_ap_out__ = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
}
ap_out__ = NA_PTR_TYPE(rblapack_ap_out__, complex*);
MEMCPY(ap_out__, ap, complex, NA_TOTAL(rblapack_ap));
rblapack_ap = rblapack_ap_out__;
ap = ap_out__;
work = ALLOC_N(complex, (n));
chptri_(&uplo, &n, ap, ipiv, work, &info);
free(work);
rblapack_info = INT2NUM(info);
return rb_ary_new3(2, rblapack_info, rblapack_ap);
}
void
init_lapack_chptri(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "chptri", rblapack_chptri, -1);
}
|