1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
#include "rb_lapack.h"
extern VOID cla_gbamv_(integer* trans, integer* m, integer* n, integer* kl, integer* ku, real* alpha, real* ab, integer* ldab, real* x, integer* incx, real* beta, real* y, integer* incy);
static VALUE
rblapack_cla_gbamv(int argc, VALUE *argv, VALUE self){
#ifdef USEXBLAS
VALUE rblapack_trans;
integer trans;
VALUE rblapack_m;
integer m;
VALUE rblapack_kl;
integer kl;
VALUE rblapack_ku;
integer ku;
VALUE rblapack_alpha;
real alpha;
VALUE rblapack_ab;
real *ab;
VALUE rblapack_x;
real *x;
VALUE rblapack_incx;
integer incx;
VALUE rblapack_beta;
real beta;
VALUE rblapack_y;
real *y;
VALUE rblapack_incy;
integer incy;
VALUE rblapack_y_out__;
real *y_out__;
integer ldab;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n y = NumRu::Lapack.cla_gbamv( trans, m, kl, ku, alpha, ab, x, incx, beta, y, incy, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CLA_GBAMV( TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X, INCX, BETA, Y, INCY )\n\n* Purpose\n* =======\n*\n* SLA_GBAMV performs one of the matrix-vector operations\n*\n* y := alpha*abs(A)*abs(x) + beta*abs(y),\n* or y := alpha*abs(A)'*abs(x) + beta*abs(y),\n*\n* where alpha and beta are scalars, x and y are vectors and A is an\n* m by n matrix.\n*\n* This function is primarily used in calculating error bounds.\n* To protect against underflow during evaluation, components in\n* the resulting vector are perturbed away from zero by (N+1)\n* times the underflow threshold. To prevent unnecessarily large\n* errors for block-structure embedded in general matrices,\n* \"symbolically\" zero components are not perturbed. A zero\n* entry is considered \"symbolic\" if all multiplications involved\n* in computing that entry have at least one zero multiplicand.\n*\n\n* Arguments\n* ==========\n*\n* TRANS (input) INTEGER\n* On entry, TRANS specifies the operation to be performed as\n* follows:\n*\n* BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y)\n* BLAS_TRANS y := alpha*abs(A')*abs(x) + beta*abs(y)\n* BLAS_CONJ_TRANS y := alpha*abs(A')*abs(x) + beta*abs(y)\n*\n* Unchanged on exit.\n*\n* M (input) INTEGER\n* On entry, M specifies the number of rows of the matrix A.\n* M must be at least zero.\n* Unchanged on exit.\n*\n* N (input) INTEGER\n* On entry, N specifies the number of columns of the matrix A.\n* N must be at least zero.\n* Unchanged on exit.\n*\n* KL (input) INTEGER\n* The number of subdiagonals within the band of A. KL >= 0.\n*\n* KU (input) INTEGER\n* The number of superdiagonals within the band of A. KU >= 0.\n*\n* ALPHA (input) REAL\n* On entry, ALPHA specifies the scalar alpha.\n* Unchanged on exit.\n*\n* A (input) REAL array, dimension (LDA,n)\n* Before entry, the leading m by n part of the array A must\n* contain the matrix of coefficients.\n* Unchanged on exit.\n*\n* LDA (input) INTEGER\n* On entry, LDA specifies the first dimension of A as declared\n* in the calling (sub) program. LDA must be at least\n* max( 1, m ).\n* Unchanged on exit.\n*\n* X (input) REAL array, dimension at least\n* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'\n* and at least\n* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.\n* Before entry, the incremented array X must contain the\n* vector x.\n* Unchanged on exit.\n*\n* INCX (input) INTEGER\n* On entry, INCX specifies the increment for the elements of\n* X. INCX must not be zero.\n* Unchanged on exit.\n*\n* BETA (input) REAL\n* On entry, BETA specifies the scalar beta. When BETA is\n* supplied as zero then Y need not be set on input.\n* Unchanged on exit.\n*\n* Y (input/output) REAL array, dimension at least\n* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'\n* and at least\n* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.\n* Before entry with BETA non-zero, the incremented array Y\n* must contain the vector y. On exit, Y is overwritten by the\n* updated vector y.\n*\n* INCY (input) INTEGER\n* On entry, INCY specifies the increment for the elements of\n* Y. INCY must not be zero.\n* Unchanged on exit.\n*\n*\n* Level 2 Blas routine.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n y = NumRu::Lapack.cla_gbamv( trans, m, kl, ku, alpha, ab, x, incx, beta, y, incy, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 11 && argc != 11)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 11)", argc);
rblapack_trans = argv[0];
rblapack_m = argv[1];
rblapack_kl = argv[2];
rblapack_ku = argv[3];
rblapack_alpha = argv[4];
rblapack_ab = argv[5];
rblapack_x = argv[6];
rblapack_incx = argv[7];
rblapack_beta = argv[8];
rblapack_y = argv[9];
rblapack_incy = argv[10];
if (argc == 11) {
} else if (rblapack_options != Qnil) {
} else {
}
trans = NUM2INT(rblapack_trans);
kl = NUM2INT(rblapack_kl);
alpha = (real)NUM2DBL(rblapack_alpha);
incx = NUM2INT(rblapack_incx);
incy = NUM2INT(rblapack_incy);
m = NUM2INT(rblapack_m);
beta = (real)NUM2DBL(rblapack_beta);
ldab = MAX(1,m);
ku = NUM2INT(rblapack_ku);
if (!NA_IsNArray(rblapack_ab))
rb_raise(rb_eArgError, "ab (6th argument) must be NArray");
if (NA_RANK(rblapack_ab) != 2)
rb_raise(rb_eArgError, "rank of ab (6th argument) must be %d", 2);
if (NA_SHAPE0(rblapack_ab) != ldab)
rb_raise(rb_eRuntimeError, "shape 0 of ab must be MAX(1,m)");
n = NA_SHAPE1(rblapack_ab);
if (NA_TYPE(rblapack_ab) != NA_SFLOAT)
rblapack_ab = na_change_type(rblapack_ab, NA_SFLOAT);
ab = NA_PTR_TYPE(rblapack_ab, real*);
if (!NA_IsNArray(rblapack_y))
rb_raise(rb_eArgError, "y (10th argument) must be NArray");
if (NA_RANK(rblapack_y) != 1)
rb_raise(rb_eArgError, "rank of y (10th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_y) != (trans == ilatrans_("N") ? 1 + ( m - 1 )*abs( incy ) : 1 + ( n - 1 )*abs( incy )))
rb_raise(rb_eRuntimeError, "shape 0 of y must be %d", trans == ilatrans_("N") ? 1 + ( m - 1 )*abs( incy ) : 1 + ( n - 1 )*abs( incy ));
if (NA_TYPE(rblapack_y) != NA_SFLOAT)
rblapack_y = na_change_type(rblapack_y, NA_SFLOAT);
y = NA_PTR_TYPE(rblapack_y, real*);
if (!NA_IsNArray(rblapack_x))
rb_raise(rb_eArgError, "x (7th argument) must be NArray");
if (NA_RANK(rblapack_x) != 1)
rb_raise(rb_eArgError, "rank of x (7th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_x) != (trans == ilatrans_("N") ? 1 + ( n - 1 )*abs( incx ) : 1 + ( m - 1 )*abs( incx )))
rb_raise(rb_eRuntimeError, "shape 0 of x must be %d", trans == ilatrans_("N") ? 1 + ( n - 1 )*abs( incx ) : 1 + ( m - 1 )*abs( incx ));
if (NA_TYPE(rblapack_x) != NA_SFLOAT)
rblapack_x = na_change_type(rblapack_x, NA_SFLOAT);
x = NA_PTR_TYPE(rblapack_x, real*);
{
na_shape_t shape[1];
shape[0] = trans == ilatrans_("N") ? 1 + ( m - 1 )*abs( incy ) : 1 + ( n - 1 )*abs( incy );
rblapack_y_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
y_out__ = NA_PTR_TYPE(rblapack_y_out__, real*);
MEMCPY(y_out__, y, real, NA_TOTAL(rblapack_y));
rblapack_y = rblapack_y_out__;
y = y_out__;
cla_gbamv_(&trans, &m, &n, &kl, &ku, &alpha, ab, &ldab, x, &incx, &beta, y, &incy);
return rblapack_y;
#else
return Qnil;
#endif
}
void
init_lapack_cla_gbamv(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "cla_gbamv", rblapack_cla_gbamv, -1);
}
|