File: cla_gbrfsx_extended.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (299 lines) | stat: -rw-r--r-- 24,691 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
#include "rb_lapack.h"

extern VOID cla_gbrfsx_extended_(integer* prec_type, integer* trans_type, integer* n, integer* kl, integer* ku, integer* nrhs, complex* ab, integer* ldab, complex* afb, integer* ldafb, integer* ipiv, logical* colequ, real* c, complex* b, integer* ldb, complex* y, integer* ldy, real* berr_out, integer* n_norms, real* err_bnds_norm, real* err_bnds_comp, complex* res, real* ayb, complex* dy, complex* y_tail, real* rcond, integer* ithresh, real* rthresh, real* dz_ub, logical* ignore_cwise, integer* info);


static VALUE
rblapack_cla_gbrfsx_extended(int argc, VALUE *argv, VALUE self){
#ifdef USEXBLAS
  VALUE rblapack_prec_type;
  integer prec_type; 
  VALUE rblapack_trans_type;
  integer trans_type; 
  VALUE rblapack_kl;
  integer kl; 
  VALUE rblapack_ku;
  integer ku; 
  VALUE rblapack_ab;
  complex *ab; 
  VALUE rblapack_afb;
  complex *afb; 
  VALUE rblapack_ipiv;
  integer *ipiv; 
  VALUE rblapack_colequ;
  logical colequ; 
  VALUE rblapack_c;
  real *c; 
  VALUE rblapack_b;
  complex *b; 
  VALUE rblapack_y;
  complex *y; 
  VALUE rblapack_n_norms;
  integer n_norms; 
  VALUE rblapack_err_bnds_norm;
  real *err_bnds_norm; 
  VALUE rblapack_err_bnds_comp;
  real *err_bnds_comp; 
  VALUE rblapack_res;
  complex *res; 
  VALUE rblapack_ayb;
  real *ayb; 
  VALUE rblapack_dy;
  complex *dy; 
  VALUE rblapack_y_tail;
  complex *y_tail; 
  VALUE rblapack_rcond;
  real rcond; 
  VALUE rblapack_ithresh;
  integer ithresh; 
  VALUE rblapack_rthresh;
  real rthresh; 
  VALUE rblapack_dz_ub;
  real dz_ub; 
  VALUE rblapack_ignore_cwise;
  logical ignore_cwise; 
  VALUE rblapack_berr_out;
  real *berr_out; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_y_out__;
  complex *y_out__;
  VALUE rblapack_err_bnds_norm_out__;
  real *err_bnds_norm_out__;
  VALUE rblapack_err_bnds_comp_out__;
  real *err_bnds_comp_out__;

  integer lda;
  integer n;
  integer ldaf;
  integer ldb;
  integer nrhs;
  integer ldy;
  integer n_err_bnds;
  integer ldafb;
  integer ldab;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  berr_out, info, y, err_bnds_norm, err_bnds_comp = NumRu::Lapack.cla_gbrfsx_extended( prec_type, trans_type, kl, ku, ab, afb, ipiv, colequ, c, b, y, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail, rcond, ithresh, rthresh, dz_ub, ignore_cwise, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE CLA_GBRFSX_EXTENDED ( PREC_TYPE, TRANS_TYPE, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV, COLEQU, C, B, LDB, Y, LDY, BERR_OUT, N_NORMS, ERR_BNDS_NORM, ERR_BNDS_COMP, RES, AYB, DY, Y_TAIL, RCOND, ITHRESH, RTHRESH, DZ_UB, IGNORE_CWISE, INFO )\n\n*  Purpose\n*  =======\n*\n*  CLA_GBRFSX_EXTENDED improves the computed solution to a system of\n*  linear equations by performing extra-precise iterative refinement\n*  and provides error bounds and backward error estimates for the solution.\n*  This subroutine is called by CGBRFSX to perform iterative refinement.\n*  In addition to normwise error bound, the code provides maximum\n*  componentwise error bound if possible. See comments for ERR_BNDS_NORM\n*  and ERR_BNDS_COMP for details of the error bounds. Note that this\n*  subroutine is only resonsible for setting the second fields of\n*  ERR_BNDS_NORM and ERR_BNDS_COMP.\n*\n\n*  Arguments\n*  =========\n*\n*     PREC_TYPE      (input) INTEGER\n*     Specifies the intermediate precision to be used in refinement.\n*     The value is defined by ILAPREC(P) where P is a CHARACTER and\n*     P    = 'S':  Single\n*          = 'D':  Double\n*          = 'I':  Indigenous\n*          = 'X', 'E':  Extra\n*\n*     TRANS_TYPE     (input) INTEGER\n*     Specifies the transposition operation on A.\n*     The value is defined by ILATRANS(T) where T is a CHARACTER and\n*     T    = 'N':  No transpose\n*          = 'T':  Transpose\n*          = 'C':  Conjugate transpose\n*\n*     N              (input) INTEGER\n*     The number of linear equations, i.e., the order of the\n*     matrix A.  N >= 0.\n*\n*     KL             (input) INTEGER\n*     The number of subdiagonals within the band of A.  KL >= 0.\n*\n*     KU             (input) INTEGER\n*     The number of superdiagonals within the band of A.  KU >= 0\n*\n*     NRHS           (input) INTEGER\n*     The number of right-hand-sides, i.e., the number of columns of the\n*     matrix B.\n*\n*     AB             (input) COMPLEX array, dimension (LDA,N)\n*     On entry, the N-by-N matrix A.\n*\n*     LDAB           (input) INTEGER\n*     The leading dimension of the array A.  LDA >= max(1,N).\n*\n*     AFB            (input) COMPLEX array, dimension (LDAF,N)\n*     The factors L and U from the factorization\n*     A = P*L*U as computed by CGBTRF.\n*\n*     LDAFB          (input) INTEGER\n*     The leading dimension of the array AF.  LDAF >= max(1,N).\n*\n*     IPIV           (input) INTEGER array, dimension (N)\n*     The pivot indices from the factorization A = P*L*U\n*     as computed by CGBTRF; row i of the matrix was interchanged\n*     with row IPIV(i).\n*\n*     COLEQU         (input) LOGICAL\n*     If .TRUE. then column equilibration was done to A before calling\n*     this routine. This is needed to compute the solution and error\n*     bounds correctly.\n*\n*     C              (input) REAL array, dimension (N)\n*     The column scale factors for A. If COLEQU = .FALSE., C\n*     is not accessed. If C is input, each element of C should be a power\n*     of the radix to ensure a reliable solution and error estimates.\n*     Scaling by powers of the radix does not cause rounding errors unless\n*     the result underflows or overflows. Rounding errors during scaling\n*     lead to refining with a matrix that is not equivalent to the\n*     input matrix, producing error estimates that may not be\n*     reliable.\n*\n*     B              (input) COMPLEX array, dimension (LDB,NRHS)\n*     The right-hand-side matrix B.\n*\n*     LDB            (input) INTEGER\n*     The leading dimension of the array B.  LDB >= max(1,N).\n*\n*     Y              (input/output) COMPLEX array, dimension (LDY,NRHS)\n*     On entry, the solution matrix X, as computed by CGBTRS.\n*     On exit, the improved solution matrix Y.\n*\n*     LDY            (input) INTEGER\n*     The leading dimension of the array Y.  LDY >= max(1,N).\n*\n*     BERR_OUT       (output) REAL array, dimension (NRHS)\n*     On exit, BERR_OUT(j) contains the componentwise relative backward\n*     error for right-hand-side j from the formula\n*         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )\n*     where abs(Z) is the componentwise absolute value of the matrix\n*     or vector Z. This is computed by CLA_LIN_BERR.\n*\n*     N_NORMS        (input) INTEGER\n*     Determines which error bounds to return (see ERR_BNDS_NORM\n*     and ERR_BNDS_COMP).\n*     If N_NORMS >= 1 return normwise error bounds.\n*     If N_NORMS >= 2 return componentwise error bounds.\n*\n*     ERR_BNDS_NORM  (input/output) REAL array, dimension\n*                    (NRHS, N_ERR_BNDS)\n*     For each right-hand side, this array contains information about\n*     various error bounds and condition numbers corresponding to the\n*     normwise relative error, which is defined as follows:\n*\n*     Normwise relative error in the ith solution vector:\n*             max_j (abs(XTRUE(j,i) - X(j,i)))\n*            ------------------------------\n*                  max_j abs(X(j,i))\n*\n*     The array is indexed by the type of error information as described\n*     below. There currently are up to three pieces of information\n*     returned.\n*\n*     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith\n*     right-hand side.\n*\n*     The second index in ERR_BNDS_NORM(:,err) contains the following\n*     three fields:\n*     err = 1 \"Trust/don't trust\" boolean. Trust the answer if the\n*              reciprocal condition number is less than the threshold\n*              sqrt(n) * slamch('Epsilon').\n*\n*     err = 2 \"Guaranteed\" error bound: The estimated forward error,\n*              almost certainly within a factor of 10 of the true error\n*              so long as the next entry is greater than the threshold\n*              sqrt(n) * slamch('Epsilon'). This error bound should only\n*              be trusted if the previous boolean is true.\n*\n*     err = 3  Reciprocal condition number: Estimated normwise\n*              reciprocal condition number.  Compared with the threshold\n*              sqrt(n) * slamch('Epsilon') to determine if the error\n*              estimate is \"guaranteed\". These reciprocal condition\n*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some\n*              appropriately scaled matrix Z.\n*              Let Z = S*A, where S scales each row by a power of the\n*              radix so all absolute row sums of Z are approximately 1.\n*\n*     This subroutine is only responsible for setting the second field\n*     above.\n*     See Lapack Working Note 165 for further details and extra\n*     cautions.\n*\n*     ERR_BNDS_COMP  (input/output) REAL array, dimension\n*                    (NRHS, N_ERR_BNDS)\n*     For each right-hand side, this array contains information about\n*     various error bounds and condition numbers corresponding to the\n*     componentwise relative error, which is defined as follows:\n*\n*     Componentwise relative error in the ith solution vector:\n*                    abs(XTRUE(j,i) - X(j,i))\n*             max_j ----------------------\n*                         abs(X(j,i))\n*\n*     The array is indexed by the right-hand side i (on which the\n*     componentwise relative error depends), and the type of error\n*     information as described below. There currently are up to three\n*     pieces of information returned for each right-hand side. If\n*     componentwise accuracy is not requested (PARAMS(3) = 0.0), then\n*     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most\n*     the first (:,N_ERR_BNDS) entries are returned.\n*\n*     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith\n*     right-hand side.\n*\n*     The second index in ERR_BNDS_COMP(:,err) contains the following\n*     three fields:\n*     err = 1 \"Trust/don't trust\" boolean. Trust the answer if the\n*              reciprocal condition number is less than the threshold\n*              sqrt(n) * slamch('Epsilon').\n*\n*     err = 2 \"Guaranteed\" error bound: The estimated forward error,\n*              almost certainly within a factor of 10 of the true error\n*              so long as the next entry is greater than the threshold\n*              sqrt(n) * slamch('Epsilon'). This error bound should only\n*              be trusted if the previous boolean is true.\n*\n*     err = 3  Reciprocal condition number: Estimated componentwise\n*              reciprocal condition number.  Compared with the threshold\n*              sqrt(n) * slamch('Epsilon') to determine if the error\n*              estimate is \"guaranteed\". These reciprocal condition\n*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some\n*              appropriately scaled matrix Z.\n*              Let Z = S*(A*diag(x)), where x is the solution for the\n*              current right-hand side and S scales each row of\n*              A*diag(x) by a power of the radix so all absolute row\n*              sums of Z are approximately 1.\n*\n*     This subroutine is only responsible for setting the second field\n*     above.\n*     See Lapack Working Note 165 for further details and extra\n*     cautions.\n*\n*     RES            (input) COMPLEX array, dimension (N)\n*     Workspace to hold the intermediate residual.\n*\n*     AYB            (input) REAL array, dimension (N)\n*     Workspace.\n*\n*     DY             (input) COMPLEX array, dimension (N)\n*     Workspace to hold the intermediate solution.\n*\n*     Y_TAIL         (input) COMPLEX array, dimension (N)\n*     Workspace to hold the trailing bits of the intermediate solution.\n*\n*     RCOND          (input) REAL\n*     Reciprocal scaled condition number.  This is an estimate of the\n*     reciprocal Skeel condition number of the matrix A after\n*     equilibration (if done).  If this is less than the machine\n*     precision (in particular, if it is zero), the matrix is singular\n*     to working precision.  Note that the error may still be small even\n*     if this number is very small and the matrix appears ill-\n*     conditioned.\n*\n*     ITHRESH        (input) INTEGER\n*     The maximum number of residual computations allowed for\n*     refinement. The default is 10. For 'aggressive' set to 100 to\n*     permit convergence using approximate factorizations or\n*     factorizations other than LU. If the factorization uses a\n*     technique other than Gaussian elimination, the guarantees in\n*     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.\n*\n*     RTHRESH        (input) REAL\n*     Determines when to stop refinement if the error estimate stops\n*     decreasing. Refinement will stop when the next solution no longer\n*     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is\n*     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The\n*     default value is 0.5. For 'aggressive' set to 0.9 to permit\n*     convergence on extremely ill-conditioned matrices. See LAWN 165\n*     for more details.\n*\n*     DZ_UB          (input) REAL\n*     Determines when to start considering componentwise convergence.\n*     Componentwise convergence is only considered after each component\n*     of the solution Y is stable, which we definte as the relative\n*     change in each component being less than DZ_UB. The default value\n*     is 0.25, requiring the first bit to be stable. See LAWN 165 for\n*     more details.\n*\n*     IGNORE_CWISE   (input) LOGICAL\n*     If .TRUE. then ignore componentwise convergence. Default value\n*     is .FALSE..\n*\n*     INFO           (output) INTEGER\n*       = 0:  Successful exit.\n*       < 0:  if INFO = -i, the ith argument to CGBTRS had an illegal\n*             value\n*\n\n*  =====================================================================\n*\n*     .. Local Scalars ..\n      CHARACTER          TRANS\n      INTEGER            CNT, I, J, M, X_STATE, Z_STATE, Y_PREC_STATE\n      REAL               YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,\n     $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,\n     $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,\n     $                   EPS, HUGEVAL, INCR_THRESH\n      LOGICAL            INCR_PREC\n      COMPLEX            ZDUM\n*     ..\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  berr_out, info, y, err_bnds_norm, err_bnds_comp = NumRu::Lapack.cla_gbrfsx_extended( prec_type, trans_type, kl, ku, ab, afb, ipiv, colequ, c, b, y, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail, rcond, ithresh, rthresh, dz_ub, ignore_cwise, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 23 && argc != 23)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 23)", argc);
  rblapack_prec_type = argv[0];
  rblapack_trans_type = argv[1];
  rblapack_kl = argv[2];
  rblapack_ku = argv[3];
  rblapack_ab = argv[4];
  rblapack_afb = argv[5];
  rblapack_ipiv = argv[6];
  rblapack_colequ = argv[7];
  rblapack_c = argv[8];
  rblapack_b = argv[9];
  rblapack_y = argv[10];
  rblapack_n_norms = argv[11];
  rblapack_err_bnds_norm = argv[12];
  rblapack_err_bnds_comp = argv[13];
  rblapack_res = argv[14];
  rblapack_ayb = argv[15];
  rblapack_dy = argv[16];
  rblapack_y_tail = argv[17];
  rblapack_rcond = argv[18];
  rblapack_ithresh = argv[19];
  rblapack_rthresh = argv[20];
  rblapack_dz_ub = argv[21];
  rblapack_ignore_cwise = argv[22];
  if (argc == 23) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  prec_type = NUM2INT(rblapack_prec_type);
  kl = NUM2INT(rblapack_kl);
  if (!NA_IsNArray(rblapack_ab))
    rb_raise(rb_eArgError, "ab (5th argument) must be NArray");
  if (NA_RANK(rblapack_ab) != 2)
    rb_raise(rb_eArgError, "rank of ab (5th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_ab);
  n = NA_SHAPE1(rblapack_ab);
  if (NA_TYPE(rblapack_ab) != NA_SCOMPLEX)
    rblapack_ab = na_change_type(rblapack_ab, NA_SCOMPLEX);
  ab = NA_PTR_TYPE(rblapack_ab, complex*);
  if (!NA_IsNArray(rblapack_ipiv))
    rb_raise(rb_eArgError, "ipiv (7th argument) must be NArray");
  if (NA_RANK(rblapack_ipiv) != 1)
    rb_raise(rb_eArgError, "rank of ipiv (7th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_ipiv) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of ipiv must be the same as shape 1 of ab");
  if (NA_TYPE(rblapack_ipiv) != NA_LINT)
    rblapack_ipiv = na_change_type(rblapack_ipiv, NA_LINT);
  ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
  if (!NA_IsNArray(rblapack_c))
    rb_raise(rb_eArgError, "c (9th argument) must be NArray");
  if (NA_RANK(rblapack_c) != 1)
    rb_raise(rb_eArgError, "rank of c (9th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_c) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of c must be the same as shape 1 of ab");
  if (NA_TYPE(rblapack_c) != NA_SFLOAT)
    rblapack_c = na_change_type(rblapack_c, NA_SFLOAT);
  c = NA_PTR_TYPE(rblapack_c, real*);
  if (!NA_IsNArray(rblapack_y))
    rb_raise(rb_eArgError, "y (11th argument) must be NArray");
  if (NA_RANK(rblapack_y) != 2)
    rb_raise(rb_eArgError, "rank of y (11th argument) must be %d", 2);
  ldy = NA_SHAPE0(rblapack_y);
  nrhs = NA_SHAPE1(rblapack_y);
  if (NA_TYPE(rblapack_y) != NA_SCOMPLEX)
    rblapack_y = na_change_type(rblapack_y, NA_SCOMPLEX);
  y = NA_PTR_TYPE(rblapack_y, complex*);
  if (!NA_IsNArray(rblapack_err_bnds_norm))
    rb_raise(rb_eArgError, "err_bnds_norm (13th argument) must be NArray");
  if (NA_RANK(rblapack_err_bnds_norm) != 2)
    rb_raise(rb_eArgError, "rank of err_bnds_norm (13th argument) must be %d", 2);
  if (NA_SHAPE0(rblapack_err_bnds_norm) != nrhs)
    rb_raise(rb_eRuntimeError, "shape 0 of err_bnds_norm must be the same as shape 1 of y");
  n_err_bnds = NA_SHAPE1(rblapack_err_bnds_norm);
  if (NA_TYPE(rblapack_err_bnds_norm) != NA_SFLOAT)
    rblapack_err_bnds_norm = na_change_type(rblapack_err_bnds_norm, NA_SFLOAT);
  err_bnds_norm = NA_PTR_TYPE(rblapack_err_bnds_norm, real*);
  if (!NA_IsNArray(rblapack_res))
    rb_raise(rb_eArgError, "res (15th argument) must be NArray");
  if (NA_RANK(rblapack_res) != 1)
    rb_raise(rb_eArgError, "rank of res (15th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_res) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of res must be the same as shape 1 of ab");
  if (NA_TYPE(rblapack_res) != NA_SCOMPLEX)
    rblapack_res = na_change_type(rblapack_res, NA_SCOMPLEX);
  res = NA_PTR_TYPE(rblapack_res, complex*);
  if (!NA_IsNArray(rblapack_dy))
    rb_raise(rb_eArgError, "dy (17th argument) must be NArray");
  if (NA_RANK(rblapack_dy) != 1)
    rb_raise(rb_eArgError, "rank of dy (17th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_dy) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of dy must be the same as shape 1 of ab");
  if (NA_TYPE(rblapack_dy) != NA_SCOMPLEX)
    rblapack_dy = na_change_type(rblapack_dy, NA_SCOMPLEX);
  dy = NA_PTR_TYPE(rblapack_dy, complex*);
  rcond = (real)NUM2DBL(rblapack_rcond);
  rthresh = (real)NUM2DBL(rblapack_rthresh);
  ignore_cwise = (rblapack_ignore_cwise == Qtrue);
  trans_type = NUM2INT(rblapack_trans_type);
  if (!NA_IsNArray(rblapack_afb))
    rb_raise(rb_eArgError, "afb (6th argument) must be NArray");
  if (NA_RANK(rblapack_afb) != 2)
    rb_raise(rb_eArgError, "rank of afb (6th argument) must be %d", 2);
  ldaf = NA_SHAPE0(rblapack_afb);
  if (NA_SHAPE1(rblapack_afb) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of afb must be the same as shape 1 of ab");
  if (NA_TYPE(rblapack_afb) != NA_SCOMPLEX)
    rblapack_afb = na_change_type(rblapack_afb, NA_SCOMPLEX);
  afb = NA_PTR_TYPE(rblapack_afb, complex*);
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (10th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (10th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  if (NA_SHAPE1(rblapack_b) != nrhs)
    rb_raise(rb_eRuntimeError, "shape 1 of b must be the same as shape 1 of y");
  if (NA_TYPE(rblapack_b) != NA_SCOMPLEX)
    rblapack_b = na_change_type(rblapack_b, NA_SCOMPLEX);
  b = NA_PTR_TYPE(rblapack_b, complex*);
  if (!NA_IsNArray(rblapack_err_bnds_comp))
    rb_raise(rb_eArgError, "err_bnds_comp (14th argument) must be NArray");
  if (NA_RANK(rblapack_err_bnds_comp) != 2)
    rb_raise(rb_eArgError, "rank of err_bnds_comp (14th argument) must be %d", 2);
  if (NA_SHAPE0(rblapack_err_bnds_comp) != nrhs)
    rb_raise(rb_eRuntimeError, "shape 0 of err_bnds_comp must be the same as shape 1 of y");
  if (NA_SHAPE1(rblapack_err_bnds_comp) != n_err_bnds)
    rb_raise(rb_eRuntimeError, "shape 1 of err_bnds_comp must be the same as shape 1 of err_bnds_norm");
  if (NA_TYPE(rblapack_err_bnds_comp) != NA_SFLOAT)
    rblapack_err_bnds_comp = na_change_type(rblapack_err_bnds_comp, NA_SFLOAT);
  err_bnds_comp = NA_PTR_TYPE(rblapack_err_bnds_comp, real*);
  if (!NA_IsNArray(rblapack_y_tail))
    rb_raise(rb_eArgError, "y_tail (18th argument) must be NArray");
  if (NA_RANK(rblapack_y_tail) != 1)
    rb_raise(rb_eArgError, "rank of y_tail (18th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_y_tail) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of y_tail must be the same as shape 1 of ab");
  if (NA_TYPE(rblapack_y_tail) != NA_SCOMPLEX)
    rblapack_y_tail = na_change_type(rblapack_y_tail, NA_SCOMPLEX);
  y_tail = NA_PTR_TYPE(rblapack_y_tail, complex*);
  dz_ub = (real)NUM2DBL(rblapack_dz_ub);
  ku = NUM2INT(rblapack_ku);
  n_norms = NUM2INT(rblapack_n_norms);
  ithresh = NUM2INT(rblapack_ithresh);
  colequ = (rblapack_colequ == Qtrue);
  if (!NA_IsNArray(rblapack_ayb))
    rb_raise(rb_eArgError, "ayb (16th argument) must be NArray");
  if (NA_RANK(rblapack_ayb) != 1)
    rb_raise(rb_eArgError, "rank of ayb (16th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_ayb) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of ayb must be the same as shape 1 of ab");
  if (NA_TYPE(rblapack_ayb) != NA_SFLOAT)
    rblapack_ayb = na_change_type(rblapack_ayb, NA_SFLOAT);
  ayb = NA_PTR_TYPE(rblapack_ayb, real*);
  ldab = lda = MAX(1,n);
  ldafb = ldaf = MAX(1,n);
  {
    na_shape_t shape[1];
    shape[0] = nrhs;
    rblapack_berr_out = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  berr_out = NA_PTR_TYPE(rblapack_berr_out, real*);
  {
    na_shape_t shape[2];
    shape[0] = ldy;
    shape[1] = nrhs;
    rblapack_y_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
  }
  y_out__ = NA_PTR_TYPE(rblapack_y_out__, complex*);
  MEMCPY(y_out__, y, complex, NA_TOTAL(rblapack_y));
  rblapack_y = rblapack_y_out__;
  y = y_out__;
  {
    na_shape_t shape[2];
    shape[0] = nrhs;
    shape[1] = n_err_bnds;
    rblapack_err_bnds_norm_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  err_bnds_norm_out__ = NA_PTR_TYPE(rblapack_err_bnds_norm_out__, real*);
  MEMCPY(err_bnds_norm_out__, err_bnds_norm, real, NA_TOTAL(rblapack_err_bnds_norm));
  rblapack_err_bnds_norm = rblapack_err_bnds_norm_out__;
  err_bnds_norm = err_bnds_norm_out__;
  {
    na_shape_t shape[2];
    shape[0] = nrhs;
    shape[1] = n_err_bnds;
    rblapack_err_bnds_comp_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  err_bnds_comp_out__ = NA_PTR_TYPE(rblapack_err_bnds_comp_out__, real*);
  MEMCPY(err_bnds_comp_out__, err_bnds_comp, real, NA_TOTAL(rblapack_err_bnds_comp));
  rblapack_err_bnds_comp = rblapack_err_bnds_comp_out__;
  err_bnds_comp = err_bnds_comp_out__;

  cla_gbrfsx_extended_(&prec_type, &trans_type, &n, &kl, &ku, &nrhs, ab, &ldab, afb, &ldafb, ipiv, &colequ, c, b, &ldb, y, &ldy, berr_out, &n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail, &rcond, &ithresh, &rthresh, &dz_ub, &ignore_cwise, &info);

  rblapack_info = INT2NUM(info);
  return rb_ary_new3(5, rblapack_berr_out, rblapack_info, rblapack_y, rblapack_err_bnds_norm, rblapack_err_bnds_comp);
#else
  return Qnil;
#endif
}

void
init_lapack_cla_gbrfsx_extended(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "cla_gbrfsx_extended", rblapack_cla_gbrfsx_extended, -1);
}