1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
#include "rb_lapack.h"
extern real cla_hercond_c_(char* uplo, integer* n, complex* a, integer* lda, complex* af, integer* ldaf, integer* ipiv, real* c, logical* capply, integer* info, complex* work, real* rwork);
static VALUE
rblapack_cla_hercond_c(int argc, VALUE *argv, VALUE self){
#ifdef USEXBLAS
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_a;
complex *a;
VALUE rblapack_af;
complex *af;
VALUE rblapack_ipiv;
integer *ipiv;
VALUE rblapack_c;
real *c;
VALUE rblapack_capply;
logical capply;
VALUE rblapack_work;
complex *work;
VALUE rblapack_rwork;
real *rwork;
VALUE rblapack_info;
integer info;
VALUE rblapack___out__;
real __out__;
integer lda;
integer n;
integer ldaf;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n info, __out__ = NumRu::Lapack.cla_hercond_c( uplo, a, af, ipiv, c, capply, work, rwork, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n REAL FUNCTION CLA_HERCOND_C( UPLO, N, A, LDA, AF, LDAF, IPIV, C, CAPPLY, INFO, WORK, RWORK )\n\n* Purpose\n* =======\n*\n* CLA_HERCOND_C computes the infinity norm condition number of\n* op(A) * inv(diag(C)) where C is a REAL vector.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangle of A is stored;\n* = 'L': Lower triangle of A is stored.\n*\n* N (input) INTEGER\n* The number of linear equations, i.e., the order of the\n* matrix A. N >= 0.\n*\n* A (input) COMPLEX array, dimension (LDA,N)\n* On entry, the N-by-N matrix A\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* AF (input) COMPLEX array, dimension (LDAF,N)\n* The block diagonal matrix D and the multipliers used to\n* obtain the factor U or L as computed by CHETRF.\n*\n* LDAF (input) INTEGER\n* The leading dimension of the array AF. LDAF >= max(1,N).\n*\n* IPIV (input) INTEGER array, dimension (N)\n* Details of the interchanges and the block structure of D\n* as determined by CHETRF.\n*\n* C (input) REAL array, dimension (N)\n* The vector C in the formula op(A) * inv(diag(C)).\n*\n* CAPPLY (input) LOGICAL\n* If .TRUE. then access the vector C in the formula above.\n*\n* INFO (output) INTEGER\n* = 0: Successful exit.\n* i > 0: The ith argument is invalid.\n*\n* WORK (input) COMPLEX array, dimension (2*N).\n* Workspace.\n*\n* RWORK (input) REAL array, dimension (N).\n* Workspace.\n*\n\n* =====================================================================\n*\n* .. Local Scalars ..\n INTEGER KASE, I, J\n REAL AINVNM, ANORM, TMP\n LOGICAL UP\n COMPLEX ZDUM\n* ..\n* .. Local Arrays ..\n INTEGER ISAVE( 3 )\n* ..\n* .. External Functions ..\n LOGICAL LSAME\n EXTERNAL LSAME\n* ..\n* .. External Subroutines ..\n EXTERNAL CLACN2, CHETRS, XERBLA\n* ..\n* .. Intrinsic Functions ..\n INTRINSIC ABS, MAX\n* ..\n* .. Statement Functions ..\n REAL CABS1\n* ..\n* .. Statement Function Definitions ..\n CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n info, __out__ = NumRu::Lapack.cla_hercond_c( uplo, a, af, ipiv, c, capply, work, rwork, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 8 && argc != 8)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 8)", argc);
rblapack_uplo = argv[0];
rblapack_a = argv[1];
rblapack_af = argv[2];
rblapack_ipiv = argv[3];
rblapack_c = argv[4];
rblapack_capply = argv[5];
rblapack_work = argv[6];
rblapack_rwork = argv[7];
if (argc == 8) {
} else if (rblapack_options != Qnil) {
} else {
}
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_af))
rb_raise(rb_eArgError, "af (3th argument) must be NArray");
if (NA_RANK(rblapack_af) != 2)
rb_raise(rb_eArgError, "rank of af (3th argument) must be %d", 2);
ldaf = NA_SHAPE0(rblapack_af);
n = NA_SHAPE1(rblapack_af);
if (NA_TYPE(rblapack_af) != NA_SCOMPLEX)
rblapack_af = na_change_type(rblapack_af, NA_SCOMPLEX);
af = NA_PTR_TYPE(rblapack_af, complex*);
if (!NA_IsNArray(rblapack_c))
rb_raise(rb_eArgError, "c (5th argument) must be NArray");
if (NA_RANK(rblapack_c) != 1)
rb_raise(rb_eArgError, "rank of c (5th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_c) != n)
rb_raise(rb_eRuntimeError, "shape 0 of c must be the same as shape 1 of af");
if (NA_TYPE(rblapack_c) != NA_SFLOAT)
rblapack_c = na_change_type(rblapack_c, NA_SFLOAT);
c = NA_PTR_TYPE(rblapack_c, real*);
if (!NA_IsNArray(rblapack_rwork))
rb_raise(rb_eArgError, "rwork (8th argument) must be NArray");
if (NA_RANK(rblapack_rwork) != 1)
rb_raise(rb_eArgError, "rank of rwork (8th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_rwork) != n)
rb_raise(rb_eRuntimeError, "shape 0 of rwork must be the same as shape 1 of af");
if (NA_TYPE(rblapack_rwork) != NA_SFLOAT)
rblapack_rwork = na_change_type(rblapack_rwork, NA_SFLOAT);
rwork = NA_PTR_TYPE(rblapack_rwork, real*);
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (2th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (2th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
if (NA_SHAPE1(rblapack_a) != n)
rb_raise(rb_eRuntimeError, "shape 1 of a must be the same as shape 1 of af");
if (NA_TYPE(rblapack_a) != NA_SCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_SCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, complex*);
capply = (rblapack_capply == Qtrue);
if (!NA_IsNArray(rblapack_ipiv))
rb_raise(rb_eArgError, "ipiv (4th argument) must be NArray");
if (NA_RANK(rblapack_ipiv) != 1)
rb_raise(rb_eArgError, "rank of ipiv (4th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_ipiv) != n)
rb_raise(rb_eRuntimeError, "shape 0 of ipiv must be the same as shape 1 of af");
if (NA_TYPE(rblapack_ipiv) != NA_LINT)
rblapack_ipiv = na_change_type(rblapack_ipiv, NA_LINT);
ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
if (!NA_IsNArray(rblapack_work))
rb_raise(rb_eArgError, "work (7th argument) must be NArray");
if (NA_RANK(rblapack_work) != 1)
rb_raise(rb_eArgError, "rank of work (7th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_work) != (2*n))
rb_raise(rb_eRuntimeError, "shape 0 of work must be %d", 2*n);
if (NA_TYPE(rblapack_work) != NA_SCOMPLEX)
rblapack_work = na_change_type(rblapack_work, NA_SCOMPLEX);
work = NA_PTR_TYPE(rblapack_work, complex*);
__out__ = cla_hercond_c_(&uplo, &n, a, &lda, af, &ldaf, ipiv, c, &capply, &info, work, rwork);
rblapack_info = INT2NUM(info);
rblapack___out__ = rb_float_new((double)__out__);
return rb_ary_new3(2, rblapack_info, rblapack___out__);
#else
return Qnil;
#endif
}
void
init_lapack_cla_hercond_c(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "cla_hercond_c", rblapack_cla_hercond_c, -1);
}
|