File: cla_lin_berr.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (88 lines) | stat: -rw-r--r-- 4,834 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#include "rb_lapack.h"

extern VOID cla_lin_berr_(integer* n, integer* nz, integer* nrhs, doublereal* res, doublereal* ayb, complex* berr);


static VALUE
rblapack_cla_lin_berr(int argc, VALUE *argv, VALUE self){
#ifdef USEXBLAS
  VALUE rblapack_nz;
  integer nz; 
  VALUE rblapack_res;
  doublereal *res; 
  VALUE rblapack_ayb;
  doublereal *ayb; 
  VALUE rblapack_berr;
  complex *berr; 

  integer n;
  integer nrhs;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  berr = NumRu::Lapack.cla_lin_berr( nz, res, ayb, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE CLA_LIN_BERR ( N, NZ, NRHS, RES, AYB, BERR )\n\n*  Purpose\n*  =======\n*\n*     CLA_LIN_BERR computes componentwise relative backward error from\n*     the formula\n*         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )\n*     where abs(Z) is the componentwise absolute value of the matrix\n*     or vector Z.\n*\n\n*     N       (input) INTEGER\n*     The number of linear equations, i.e., the order of the\n*     matrix A.  N >= 0.\n*\n*     NZ      (input) INTEGER\n*     We add (NZ+1)*SLAMCH( 'Safe minimum' ) to R(i) in the numerator to\n*     guard against spuriously zero residuals. Default value is N.\n*\n*     NRHS    (input) INTEGER\n*     The number of right hand sides, i.e., the number of columns\n*     of the matrices AYB, RES, and BERR.  NRHS >= 0.\n*\n*     RES    (input) DOUBLE PRECISION array, dimension (N,NRHS)\n*     The residual matrix, i.e., the matrix R in the relative backward\n*     error formula above.\n*\n*     AYB    (input) DOUBLE PRECISION array, dimension (N, NRHS)\n*     The denominator in the relative backward error formula above, i.e.,\n*     the matrix abs(op(A_s))*abs(Y) + abs(B_s). The matrices A, Y, and B\n*     are from iterative refinement (see cla_gerfsx_extended.f).\n*     \n*     BERR   (output) COMPLEX array, dimension (NRHS)\n*     The componentwise relative backward error from the formula above.\n*\n\n*  =====================================================================\n*\n*     .. Local Scalars ..\n      REAL               TMP\n      INTEGER            I, J\n      COMPLEX            CDUM\n*     ..\n*     .. Intrinsic Functions ..\n      INTRINSIC          ABS, REAL, AIMAG, MAX\n*     ..\n*     .. External Functions ..\n      EXTERNAL           SLAMCH\n      REAL               SLAMCH\n      REAL               SAFE1\n*     ..\n*     .. Statement Functions ..\n      COMPLEX            CABS1\n*     ..\n*     .. Statement Function Definitions ..\n      CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )\n*     ..\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  berr = NumRu::Lapack.cla_lin_berr( nz, res, ayb, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 3 && argc != 3)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
  rblapack_nz = argv[0];
  rblapack_res = argv[1];
  rblapack_ayb = argv[2];
  if (argc == 3) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  nz = NUM2INT(rblapack_nz);
  if (!NA_IsNArray(rblapack_ayb))
    rb_raise(rb_eArgError, "ayb (3th argument) must be NArray");
  if (NA_RANK(rblapack_ayb) != 2)
    rb_raise(rb_eArgError, "rank of ayb (3th argument) must be %d", 2);
  n = NA_SHAPE0(rblapack_ayb);
  nrhs = NA_SHAPE1(rblapack_ayb);
  if (NA_TYPE(rblapack_ayb) != NA_DFLOAT)
    rblapack_ayb = na_change_type(rblapack_ayb, NA_DFLOAT);
  ayb = NA_PTR_TYPE(rblapack_ayb, doublereal*);
  if (!NA_IsNArray(rblapack_res))
    rb_raise(rb_eArgError, "res (2th argument) must be NArray");
  if (NA_RANK(rblapack_res) != 2)
    rb_raise(rb_eArgError, "rank of res (2th argument) must be %d", 2);
  if (NA_SHAPE0(rblapack_res) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of res must be the same as shape 0 of ayb");
  if (NA_SHAPE1(rblapack_res) != nrhs)
    rb_raise(rb_eRuntimeError, "shape 1 of res must be the same as shape 1 of ayb");
  if (NA_TYPE(rblapack_res) != NA_DFLOAT)
    rblapack_res = na_change_type(rblapack_res, NA_DFLOAT);
  res = NA_PTR_TYPE(rblapack_res, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = nrhs;
    rblapack_berr = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
  }
  berr = NA_PTR_TYPE(rblapack_berr, complex*);

  cla_lin_berr_(&n, &nz, &nrhs, res, ayb, berr);

  return rblapack_berr;
#else
  return Qnil;
#endif
}

void
init_lapack_cla_lin_berr(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "cla_lin_berr", rblapack_cla_lin_berr, -1);
}