1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
|
#include "rb_lapack.h"
extern real cla_porcond_x_(char* uplo, integer* n, complex* a, integer* lda, complex* af, integer* ldaf, complex* x, integer* info, complex* work, real* rwork);
static VALUE
rblapack_cla_porcond_x(int argc, VALUE *argv, VALUE self){
#ifdef USEXBLAS
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_a;
complex *a;
VALUE rblapack_af;
complex *af;
VALUE rblapack_x;
complex *x;
VALUE rblapack_work;
complex *work;
VALUE rblapack_rwork;
real *rwork;
VALUE rblapack_info;
integer info;
VALUE rblapack___out__;
real __out__;
integer lda;
integer n;
integer ldaf;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n info, __out__ = NumRu::Lapack.cla_porcond_x( uplo, a, af, x, work, rwork, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n REAL FUNCTION CLA_PORCOND_X( UPLO, N, A, LDA, AF, LDAF, X, INFO, WORK, RWORK )\n\n* Purpose\n* =======\n*\n* CLA_PORCOND_X Computes the infinity norm condition number of\n* op(A) * diag(X) where X is a COMPLEX vector.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangle of A is stored;\n* = 'L': Lower triangle of A is stored.\n*\n* N (input) INTEGER\n* The number of linear equations, i.e., the order of the\n* matrix A. N >= 0.\n*\n* A (input) COMPLEX array, dimension (LDA,N)\n* On entry, the N-by-N matrix A.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* AF (input) COMPLEX array, dimension (LDAF,N)\n* The triangular factor U or L from the Cholesky factorization\n* A = U**T*U or A = L*L**T, as computed by CPOTRF.\n*\n* LDAF (input) INTEGER\n* The leading dimension of the array AF. LDAF >= max(1,N).\n*\n* X (input) COMPLEX array, dimension (N)\n* The vector X in the formula op(A) * diag(X).\n*\n* INFO (output) INTEGER\n* = 0: Successful exit.\n* i > 0: The ith argument is invalid.\n*\n* WORK (input) COMPLEX array, dimension (2*N).\n* Workspace.\n*\n* RWORK (input) REAL array, dimension (N).\n* Workspace.\n*\n\n* =====================================================================\n*\n* .. Local Scalars ..\n INTEGER KASE, I, J\n REAL AINVNM, ANORM, TMP\n LOGICAL UP\n COMPLEX ZDUM\n* ..\n* .. Local Arrays ..\n INTEGER ISAVE( 3 )\n* ..\n* .. External Functions ..\n LOGICAL LSAME\n EXTERNAL LSAME\n* ..\n* .. External Subroutines ..\n EXTERNAL CLACN2, CPOTRS, XERBLA\n* ..\n* .. Intrinsic Functions ..\n INTRINSIC ABS, MAX, REAL, AIMAG\n* ..\n* .. Statement Functions ..\n REAL CABS1\n* ..\n* .. Statement Function Definitions ..\n CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n info, __out__ = NumRu::Lapack.cla_porcond_x( uplo, a, af, x, work, rwork, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 6 && argc != 6)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
rblapack_uplo = argv[0];
rblapack_a = argv[1];
rblapack_af = argv[2];
rblapack_x = argv[3];
rblapack_work = argv[4];
rblapack_rwork = argv[5];
if (argc == 6) {
} else if (rblapack_options != Qnil) {
} else {
}
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_af))
rb_raise(rb_eArgError, "af (3th argument) must be NArray");
if (NA_RANK(rblapack_af) != 2)
rb_raise(rb_eArgError, "rank of af (3th argument) must be %d", 2);
ldaf = NA_SHAPE0(rblapack_af);
n = NA_SHAPE1(rblapack_af);
if (NA_TYPE(rblapack_af) != NA_SCOMPLEX)
rblapack_af = na_change_type(rblapack_af, NA_SCOMPLEX);
af = NA_PTR_TYPE(rblapack_af, complex*);
if (!NA_IsNArray(rblapack_rwork))
rb_raise(rb_eArgError, "rwork (6th argument) must be NArray");
if (NA_RANK(rblapack_rwork) != 1)
rb_raise(rb_eArgError, "rank of rwork (6th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_rwork) != n)
rb_raise(rb_eRuntimeError, "shape 0 of rwork must be the same as shape 1 of af");
if (NA_TYPE(rblapack_rwork) != NA_SFLOAT)
rblapack_rwork = na_change_type(rblapack_rwork, NA_SFLOAT);
rwork = NA_PTR_TYPE(rblapack_rwork, real*);
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (2th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (2th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
if (NA_SHAPE1(rblapack_a) != n)
rb_raise(rb_eRuntimeError, "shape 1 of a must be the same as shape 1 of af");
if (NA_TYPE(rblapack_a) != NA_SCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_SCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, complex*);
if (!NA_IsNArray(rblapack_x))
rb_raise(rb_eArgError, "x (4th argument) must be NArray");
if (NA_RANK(rblapack_x) != 1)
rb_raise(rb_eArgError, "rank of x (4th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_x) != n)
rb_raise(rb_eRuntimeError, "shape 0 of x must be the same as shape 1 of af");
if (NA_TYPE(rblapack_x) != NA_SCOMPLEX)
rblapack_x = na_change_type(rblapack_x, NA_SCOMPLEX);
x = NA_PTR_TYPE(rblapack_x, complex*);
if (!NA_IsNArray(rblapack_work))
rb_raise(rb_eArgError, "work (5th argument) must be NArray");
if (NA_RANK(rblapack_work) != 1)
rb_raise(rb_eArgError, "rank of work (5th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_work) != (2*n))
rb_raise(rb_eRuntimeError, "shape 0 of work must be %d", 2*n);
if (NA_TYPE(rblapack_work) != NA_SCOMPLEX)
rblapack_work = na_change_type(rblapack_work, NA_SCOMPLEX);
work = NA_PTR_TYPE(rblapack_work, complex*);
__out__ = cla_porcond_x_(&uplo, &n, a, &lda, af, &ldaf, x, &info, work, rwork);
rblapack_info = INT2NUM(info);
rblapack___out__ = rb_float_new((double)__out__);
return rb_ary_new3(2, rblapack_info, rblapack___out__);
#else
return Qnil;
#endif
}
void
init_lapack_cla_porcond_x(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "cla_porcond_x", rblapack_cla_porcond_x, -1);
}
|