File: cla_rpvgrw.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (83 lines) | stat: -rw-r--r-- 4,233 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#include "rb_lapack.h"

extern real cla_rpvgrw_(integer* n, integer* ncols, complex* a, integer* lda, complex* af, integer* ldaf);


static VALUE
rblapack_cla_rpvgrw(int argc, VALUE *argv, VALUE self){
#ifdef USEXBLAS
  VALUE rblapack_ncols;
  integer ncols; 
  VALUE rblapack_a;
  complex *a; 
  VALUE rblapack_af;
  complex *af; 
  VALUE rblapack___out__;
  real __out__; 

  integer lda;
  integer n;
  integer ldaf;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  __out__ = NumRu::Lapack.cla_rpvgrw( ncols, a, af, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      REAL FUNCTION CLA_RPVGRW( N, NCOLS, A, LDA, AF, LDAF )\n\n*  Purpose\n*  =======\n* \n*  CLA_RPVGRW computes the reciprocal pivot growth factor\n*  norm(A)/norm(U). The \"max absolute element\" norm is used. If this is\n*  much less than 1, the stability of the LU factorization of the\n*  (equilibrated) matrix A could be poor. This also means that the\n*  solution X, estimated condition numbers, and error bounds could be\n*  unreliable.\n*\n\n*  Arguments\n*  =========\n*\n*     N       (input) INTEGER\n*     The number of linear equations, i.e., the order of the\n*     matrix A.  N >= 0.\n*\n*     NCOLS   (input) INTEGER\n*     The number of columns of the matrix A. NCOLS >= 0.\n*\n*     A       (input) COMPLEX array, dimension (LDA,N)\n*     On entry, the N-by-N matrix A.\n*\n*     LDA     (input) INTEGER\n*     The leading dimension of the array A.  LDA >= max(1,N).\n*\n*     AF      (input) COMPLEX array, dimension (LDAF,N)\n*     The factors L and U from the factorization\n*     A = P*L*U as computed by CGETRF.\n*\n*     LDAF    (input) INTEGER\n*     The leading dimension of the array AF.  LDAF >= max(1,N).\n*\n\n*  =====================================================================\n*\n*     .. Local Scalars ..\n      INTEGER            I, J\n      REAL               AMAX, UMAX, RPVGRW\n      COMPLEX            ZDUM\n*     ..\n*     .. Intrinsic Functions ..\n      INTRINSIC          MAX, MIN, ABS, REAL, AIMAG\n*     ..\n*     .. Statement Functions ..\n      REAL               CABS1\n*     ..\n*     .. Statement Function Definitions ..\n      CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )\n*     ..\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  __out__ = NumRu::Lapack.cla_rpvgrw( ncols, a, af, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 3 && argc != 3)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
  rblapack_ncols = argv[0];
  rblapack_a = argv[1];
  rblapack_af = argv[2];
  if (argc == 3) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  ncols = NUM2INT(rblapack_ncols);
  if (!NA_IsNArray(rblapack_af))
    rb_raise(rb_eArgError, "af (3th argument) must be NArray");
  if (NA_RANK(rblapack_af) != 2)
    rb_raise(rb_eArgError, "rank of af (3th argument) must be %d", 2);
  ldaf = NA_SHAPE0(rblapack_af);
  n = NA_SHAPE1(rblapack_af);
  if (NA_TYPE(rblapack_af) != NA_SCOMPLEX)
    rblapack_af = na_change_type(rblapack_af, NA_SCOMPLEX);
  af = NA_PTR_TYPE(rblapack_af, complex*);
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (2th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (2th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  if (NA_SHAPE1(rblapack_a) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of a must be the same as shape 1 of af");
  if (NA_TYPE(rblapack_a) != NA_SCOMPLEX)
    rblapack_a = na_change_type(rblapack_a, NA_SCOMPLEX);
  a = NA_PTR_TYPE(rblapack_a, complex*);

  __out__ = cla_rpvgrw_(&n, &ncols, a, &lda, af, &ldaf);

  rblapack___out__ = rb_float_new((double)__out__);
  return rblapack___out__;
#else
  return Qnil;
#endif
}

void
init_lapack_cla_rpvgrw(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "cla_rpvgrw", rblapack_cla_rpvgrw, -1);
}