1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
|
#include "rb_lapack.h"
extern VOID claein_(logical* rightv, logical* noinit, integer* n, complex* h, integer* ldh, complex* w, complex* v, complex* b, integer* ldb, real* rwork, real* eps3, real* smlnum, integer* info);
static VALUE
rblapack_claein(int argc, VALUE *argv, VALUE self){
VALUE rblapack_rightv;
logical rightv;
VALUE rblapack_noinit;
logical noinit;
VALUE rblapack_h;
complex *h;
VALUE rblapack_w;
complex w;
VALUE rblapack_v;
complex *v;
VALUE rblapack_eps3;
real eps3;
VALUE rblapack_smlnum;
real smlnum;
VALUE rblapack_info;
integer info;
VALUE rblapack_v_out__;
complex *v_out__;
complex *b;
real *rwork;
integer ldh;
integer n;
integer ldb;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n info, v = NumRu::Lapack.claein( rightv, noinit, h, w, v, eps3, smlnum, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CLAEIN( RIGHTV, NOINIT, N, H, LDH, W, V, B, LDB, RWORK, EPS3, SMLNUM, INFO )\n\n* Purpose\n* =======\n*\n* CLAEIN uses inverse iteration to find a right or left eigenvector\n* corresponding to the eigenvalue W of a complex upper Hessenberg\n* matrix H.\n*\n\n* Arguments\n* =========\n*\n* RIGHTV (input) LOGICAL\n* = .TRUE. : compute right eigenvector;\n* = .FALSE.: compute left eigenvector.\n*\n* NOINIT (input) LOGICAL\n* = .TRUE. : no initial vector supplied in V\n* = .FALSE.: initial vector supplied in V.\n*\n* N (input) INTEGER\n* The order of the matrix H. N >= 0.\n*\n* H (input) COMPLEX array, dimension (LDH,N)\n* The upper Hessenberg matrix H.\n*\n* LDH (input) INTEGER\n* The leading dimension of the array H. LDH >= max(1,N).\n*\n* W (input) COMPLEX\n* The eigenvalue of H whose corresponding right or left\n* eigenvector is to be computed.\n*\n* V (input/output) COMPLEX array, dimension (N)\n* On entry, if NOINIT = .FALSE., V must contain a starting\n* vector for inverse iteration; otherwise V need not be set.\n* On exit, V contains the computed eigenvector, normalized so\n* that the component of largest magnitude has magnitude 1; here\n* the magnitude of a complex number (x,y) is taken to be\n* |x| + |y|.\n*\n* B (workspace) COMPLEX array, dimension (LDB,N)\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,N).\n*\n* RWORK (workspace) REAL array, dimension (N)\n*\n* EPS3 (input) REAL\n* A small machine-dependent value which is used to perturb\n* close eigenvalues, and to replace zero pivots.\n*\n* SMLNUM (input) REAL\n* A machine-dependent value close to the underflow threshold.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* = 1: inverse iteration did not converge; V is set to the\n* last iterate.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n info, v = NumRu::Lapack.claein( rightv, noinit, h, w, v, eps3, smlnum, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 7 && argc != 7)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 7)", argc);
rblapack_rightv = argv[0];
rblapack_noinit = argv[1];
rblapack_h = argv[2];
rblapack_w = argv[3];
rblapack_v = argv[4];
rblapack_eps3 = argv[5];
rblapack_smlnum = argv[6];
if (argc == 7) {
} else if (rblapack_options != Qnil) {
} else {
}
rightv = (rblapack_rightv == Qtrue);
if (!NA_IsNArray(rblapack_h))
rb_raise(rb_eArgError, "h (3th argument) must be NArray");
if (NA_RANK(rblapack_h) != 2)
rb_raise(rb_eArgError, "rank of h (3th argument) must be %d", 2);
ldh = NA_SHAPE0(rblapack_h);
n = NA_SHAPE1(rblapack_h);
if (NA_TYPE(rblapack_h) != NA_SCOMPLEX)
rblapack_h = na_change_type(rblapack_h, NA_SCOMPLEX);
h = NA_PTR_TYPE(rblapack_h, complex*);
if (!NA_IsNArray(rblapack_v))
rb_raise(rb_eArgError, "v (5th argument) must be NArray");
if (NA_RANK(rblapack_v) != 1)
rb_raise(rb_eArgError, "rank of v (5th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_v) != n)
rb_raise(rb_eRuntimeError, "shape 0 of v must be the same as shape 1 of h");
if (NA_TYPE(rblapack_v) != NA_SCOMPLEX)
rblapack_v = na_change_type(rblapack_v, NA_SCOMPLEX);
v = NA_PTR_TYPE(rblapack_v, complex*);
smlnum = (real)NUM2DBL(rblapack_smlnum);
noinit = (rblapack_noinit == Qtrue);
eps3 = (real)NUM2DBL(rblapack_eps3);
w.r = (real)NUM2DBL(rb_funcall(rblapack_w, rb_intern("real"), 0));
w.i = (real)NUM2DBL(rb_funcall(rblapack_w, rb_intern("imag"), 0));
ldb = MAX(1,n);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_v_out__ = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
}
v_out__ = NA_PTR_TYPE(rblapack_v_out__, complex*);
MEMCPY(v_out__, v, complex, NA_TOTAL(rblapack_v));
rblapack_v = rblapack_v_out__;
v = v_out__;
b = ALLOC_N(complex, (ldb)*(n));
rwork = ALLOC_N(real, (n));
claein_(&rightv, &noinit, &n, h, &ldh, &w, v, b, &ldb, rwork, &eps3, &smlnum, &info);
free(b);
free(rwork);
rblapack_info = INT2NUM(info);
return rb_ary_new3(2, rblapack_info, rblapack_v);
}
void
init_lapack_claein(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "claein", rblapack_claein, -1);
}
|