1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
|
#include "rb_lapack.h"
extern VOID clahrd_(integer* n, integer* k, integer* nb, complex* a, integer* lda, complex* tau, complex* t, integer* ldt, complex* y, integer* ldy);
static VALUE
rblapack_clahrd(int argc, VALUE *argv, VALUE self){
VALUE rblapack_n;
integer n;
VALUE rblapack_k;
integer k;
VALUE rblapack_nb;
integer nb;
VALUE rblapack_a;
complex *a;
VALUE rblapack_tau;
complex *tau;
VALUE rblapack_t;
complex *t;
VALUE rblapack_y;
complex *y;
VALUE rblapack_a_out__;
complex *a_out__;
integer lda;
integer ldt;
integer ldy;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n tau, t, y, a = NumRu::Lapack.clahrd( n, k, nb, a, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )\n\n* Purpose\n* =======\n*\n* CLAHRD reduces the first NB columns of a complex general n-by-(n-k+1)\n* matrix A so that elements below the k-th subdiagonal are zero. The\n* reduction is performed by a unitary similarity transformation\n* Q' * A * Q. The routine returns the matrices V and T which determine\n* Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T.\n*\n* This is an OBSOLETE auxiliary routine. \n* This routine will be 'deprecated' in a future release.\n* Please use the new routine CLAHR2 instead.\n*\n\n* Arguments\n* =========\n*\n* N (input) INTEGER\n* The order of the matrix A.\n*\n* K (input) INTEGER\n* The offset for the reduction. Elements below the k-th\n* subdiagonal in the first NB columns are reduced to zero.\n*\n* NB (input) INTEGER\n* The number of columns to be reduced.\n*\n* A (input/output) COMPLEX array, dimension (LDA,N-K+1)\n* On entry, the n-by-(n-k+1) general matrix A.\n* On exit, the elements on and above the k-th subdiagonal in\n* the first NB columns are overwritten with the corresponding\n* elements of the reduced matrix; the elements below the k-th\n* subdiagonal, with the array TAU, represent the matrix Q as a\n* product of elementary reflectors. The other columns of A are\n* unchanged. See Further Details.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* TAU (output) COMPLEX array, dimension (NB)\n* The scalar factors of the elementary reflectors. See Further\n* Details.\n*\n* T (output) COMPLEX array, dimension (LDT,NB)\n* The upper triangular matrix T.\n*\n* LDT (input) INTEGER\n* The leading dimension of the array T. LDT >= NB.\n*\n* Y (output) COMPLEX array, dimension (LDY,NB)\n* The n-by-nb matrix Y.\n*\n* LDY (input) INTEGER\n* The leading dimension of the array Y. LDY >= max(1,N).\n*\n\n* Further Details\n* ===============\n*\n* The matrix Q is represented as a product of nb elementary reflectors\n*\n* Q = H(1) H(2) . . . H(nb).\n*\n* Each H(i) has the form\n*\n* H(i) = I - tau * v * v'\n*\n* where tau is a complex scalar, and v is a complex vector with\n* v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in\n* A(i+k+1:n,i), and tau in TAU(i).\n*\n* The elements of the vectors v together form the (n-k+1)-by-nb matrix\n* V which is needed, with T and Y, to apply the transformation to the\n* unreduced part of the matrix, using an update of the form:\n* A := (I - V*T*V') * (A - Y*V').\n*\n* The contents of A on exit are illustrated by the following example\n* with n = 7, k = 3 and nb = 2:\n*\n* ( a h a a a )\n* ( a h a a a )\n* ( a h a a a )\n* ( h h a a a )\n* ( v1 h a a a )\n* ( v1 v2 a a a )\n* ( v1 v2 a a a )\n*\n* where a denotes an element of the original matrix A, h denotes a\n* modified element of the upper Hessenberg matrix H, and vi denotes an\n* element of the vector defining H(i).\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n tau, t, y, a = NumRu::Lapack.clahrd( n, k, nb, a, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 4 && argc != 4)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
rblapack_n = argv[0];
rblapack_k = argv[1];
rblapack_nb = argv[2];
rblapack_a = argv[3];
if (argc == 4) {
} else if (rblapack_options != Qnil) {
} else {
}
n = NUM2INT(rblapack_n);
nb = NUM2INT(rblapack_nb);
ldy = MAX(1,n);
k = NUM2INT(rblapack_k);
ldt = nb;
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (4th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (4th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
if (NA_SHAPE1(rblapack_a) != (n-k+1))
rb_raise(rb_eRuntimeError, "shape 1 of a must be %d", n-k+1);
if (NA_TYPE(rblapack_a) != NA_SCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_SCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, complex*);
{
na_shape_t shape[1];
shape[0] = MAX(1,nb);
rblapack_tau = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
}
tau = NA_PTR_TYPE(rblapack_tau, complex*);
{
na_shape_t shape[2];
shape[0] = ldt;
shape[1] = MAX(1,nb);
rblapack_t = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
t = NA_PTR_TYPE(rblapack_t, complex*);
{
na_shape_t shape[2];
shape[0] = ldy;
shape[1] = MAX(1,nb);
rblapack_y = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
y = NA_PTR_TYPE(rblapack_y, complex*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n-k+1;
rblapack_a_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, complex*);
MEMCPY(a_out__, a, complex, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
clahrd_(&n, &k, &nb, a, &lda, tau, t, &ldt, y, &ldy);
return rb_ary_new3(4, rblapack_tau, rblapack_t, rblapack_y, rblapack_a);
}
void
init_lapack_clahrd(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "clahrd", rblapack_clahrd, -1);
}
|