File: clals0.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (201 lines) | stat: -rw-r--r-- 13,007 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#include "rb_lapack.h"

extern VOID clals0_(integer* icompq, integer* nl, integer* nr, integer* sqre, integer* nrhs, complex* b, integer* ldb, complex* bx, integer* ldbx, integer* perm, integer* givptr, integer* givcol, integer* ldgcol, real* givnum, integer* ldgnum, real* poles, real* difl, real* difr, real* z, integer* k, real* c, real* s, real* rwork, integer* info);


static VALUE
rblapack_clals0(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_icompq;
  integer icompq; 
  VALUE rblapack_nl;
  integer nl; 
  VALUE rblapack_nr;
  integer nr; 
  VALUE rblapack_sqre;
  integer sqre; 
  VALUE rblapack_b;
  complex *b; 
  VALUE rblapack_perm;
  integer *perm; 
  VALUE rblapack_givptr;
  integer givptr; 
  VALUE rblapack_givcol;
  integer *givcol; 
  VALUE rblapack_givnum;
  real *givnum; 
  VALUE rblapack_poles;
  real *poles; 
  VALUE rblapack_difl;
  real *difl; 
  VALUE rblapack_difr;
  real *difr; 
  VALUE rblapack_z;
  real *z; 
  VALUE rblapack_c;
  real c; 
  VALUE rblapack_s;
  real s; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_b_out__;
  complex *b_out__;
  complex *bx;
  real *rwork;

  integer ldb;
  integer nrhs;
  integer n;
  integer ldgcol;
  integer ldgnum;
  integer k;
  integer ldbx;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, b = NumRu::Lapack.clals0( icompq, nl, nr, sqre, b, perm, givptr, givcol, givnum, poles, difl, difr, z, c, s, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE CLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX, PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, POLES, DIFL, DIFR, Z, K, C, S, RWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  CLALS0 applies back the multiplying factors of either the left or the\n*  right singular vector matrix of a diagonal matrix appended by a row\n*  to the right hand side matrix B in solving the least squares problem\n*  using the divide-and-conquer SVD approach.\n*\n*  For the left singular vector matrix, three types of orthogonal\n*  matrices are involved:\n*\n*  (1L) Givens rotations: the number of such rotations is GIVPTR; the\n*       pairs of columns/rows they were applied to are stored in GIVCOL;\n*       and the C- and S-values of these rotations are stored in GIVNUM.\n*\n*  (2L) Permutation. The (NL+1)-st row of B is to be moved to the first\n*       row, and for J=2:N, PERM(J)-th row of B is to be moved to the\n*       J-th row.\n*\n*  (3L) The left singular vector matrix of the remaining matrix.\n*\n*  For the right singular vector matrix, four types of orthogonal\n*  matrices are involved:\n*\n*  (1R) The right singular vector matrix of the remaining matrix.\n*\n*  (2R) If SQRE = 1, one extra Givens rotation to generate the right\n*       null space.\n*\n*  (3R) The inverse transformation of (2L).\n*\n*  (4R) The inverse transformation of (1L).\n*\n\n*  Arguments\n*  =========\n*\n*  ICOMPQ (input) INTEGER\n*         Specifies whether singular vectors are to be computed in\n*         factored form:\n*         = 0: Left singular vector matrix.\n*         = 1: Right singular vector matrix.\n*\n*  NL     (input) INTEGER\n*         The row dimension of the upper block. NL >= 1.\n*\n*  NR     (input) INTEGER\n*         The row dimension of the lower block. NR >= 1.\n*\n*  SQRE   (input) INTEGER\n*         = 0: the lower block is an NR-by-NR square matrix.\n*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.\n*\n*         The bidiagonal matrix has row dimension N = NL + NR + 1,\n*         and column dimension M = N + SQRE.\n*\n*  NRHS   (input) INTEGER\n*         The number of columns of B and BX. NRHS must be at least 1.\n*\n*  B      (input/output) COMPLEX array, dimension ( LDB, NRHS )\n*         On input, B contains the right hand sides of the least\n*         squares problem in rows 1 through M. On output, B contains\n*         the solution X in rows 1 through N.\n*\n*  LDB    (input) INTEGER\n*         The leading dimension of B. LDB must be at least\n*         max(1,MAX( M, N ) ).\n*\n*  BX     (workspace) COMPLEX array, dimension ( LDBX, NRHS )\n*\n*  LDBX   (input) INTEGER\n*         The leading dimension of BX.\n*\n*  PERM   (input) INTEGER array, dimension ( N )\n*         The permutations (from deflation and sorting) applied\n*         to the two blocks.\n*\n*  GIVPTR (input) INTEGER\n*         The number of Givens rotations which took place in this\n*         subproblem.\n*\n*  GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 )\n*         Each pair of numbers indicates a pair of rows/columns\n*         involved in a Givens rotation.\n*\n*  LDGCOL (input) INTEGER\n*         The leading dimension of GIVCOL, must be at least N.\n*\n*  GIVNUM (input) REAL array, dimension ( LDGNUM, 2 )\n*         Each number indicates the C or S value used in the\n*         corresponding Givens rotation.\n*\n*  LDGNUM (input) INTEGER\n*         The leading dimension of arrays DIFR, POLES and\n*         GIVNUM, must be at least K.\n*\n*  POLES  (input) REAL array, dimension ( LDGNUM, 2 )\n*         On entry, POLES(1:K, 1) contains the new singular\n*         values obtained from solving the secular equation, and\n*         POLES(1:K, 2) is an array containing the poles in the secular\n*         equation.\n*\n*  DIFL   (input) REAL array, dimension ( K ).\n*         On entry, DIFL(I) is the distance between I-th updated\n*         (undeflated) singular value and the I-th (undeflated) old\n*         singular value.\n*\n*  DIFR   (input) REAL array, dimension ( LDGNUM, 2 ).\n*         On entry, DIFR(I, 1) contains the distances between I-th\n*         updated (undeflated) singular value and the I+1-th\n*         (undeflated) old singular value. And DIFR(I, 2) is the\n*         normalizing factor for the I-th right singular vector.\n*\n*  Z      (input) REAL array, dimension ( K )\n*         Contain the components of the deflation-adjusted updating row\n*         vector.\n*\n*  K      (input) INTEGER\n*         Contains the dimension of the non-deflated matrix,\n*         This is the order of the related secular equation. 1 <= K <=N.\n*\n*  C      (input) REAL\n*         C contains garbage if SQRE =0 and the C-value of a Givens\n*         rotation related to the right null space if SQRE = 1.\n*\n*  S      (input) REAL\n*         S contains garbage if SQRE =0 and the S-value of a Givens\n*         rotation related to the right null space if SQRE = 1.\n*\n*  RWORK  (workspace) REAL array, dimension\n*         ( K*(1+NRHS) + 2*NRHS )\n*\n*  INFO   (output) INTEGER\n*          = 0:  successful exit.\n*          < 0:  if INFO = -i, the i-th argument had an illegal value.\n*\n\n*  Further Details\n*  ===============\n*\n*  Based on contributions by\n*     Ming Gu and Ren-Cang Li, Computer Science Division, University of\n*       California at Berkeley, USA\n*     Osni Marques, LBNL/NERSC, USA\n*\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, b = NumRu::Lapack.clals0( icompq, nl, nr, sqre, b, perm, givptr, givcol, givnum, poles, difl, difr, z, c, s, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 15 && argc != 15)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 15)", argc);
  rblapack_icompq = argv[0];
  rblapack_nl = argv[1];
  rblapack_nr = argv[2];
  rblapack_sqre = argv[3];
  rblapack_b = argv[4];
  rblapack_perm = argv[5];
  rblapack_givptr = argv[6];
  rblapack_givcol = argv[7];
  rblapack_givnum = argv[8];
  rblapack_poles = argv[9];
  rblapack_difl = argv[10];
  rblapack_difr = argv[11];
  rblapack_z = argv[12];
  rblapack_c = argv[13];
  rblapack_s = argv[14];
  if (argc == 15) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  icompq = NUM2INT(rblapack_icompq);
  nr = NUM2INT(rblapack_nr);
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (5th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (5th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  nrhs = NA_SHAPE1(rblapack_b);
  if (NA_TYPE(rblapack_b) != NA_SCOMPLEX)
    rblapack_b = na_change_type(rblapack_b, NA_SCOMPLEX);
  b = NA_PTR_TYPE(rblapack_b, complex*);
  givptr = NUM2INT(rblapack_givptr);
  if (!NA_IsNArray(rblapack_givnum))
    rb_raise(rb_eArgError, "givnum (9th argument) must be NArray");
  if (NA_RANK(rblapack_givnum) != 2)
    rb_raise(rb_eArgError, "rank of givnum (9th argument) must be %d", 2);
  ldgnum = NA_SHAPE0(rblapack_givnum);
  if (NA_SHAPE1(rblapack_givnum) != (2))
    rb_raise(rb_eRuntimeError, "shape 1 of givnum must be %d", 2);
  if (NA_TYPE(rblapack_givnum) != NA_SFLOAT)
    rblapack_givnum = na_change_type(rblapack_givnum, NA_SFLOAT);
  givnum = NA_PTR_TYPE(rblapack_givnum, real*);
  if (!NA_IsNArray(rblapack_difl))
    rb_raise(rb_eArgError, "difl (11th argument) must be NArray");
  if (NA_RANK(rblapack_difl) != 1)
    rb_raise(rb_eArgError, "rank of difl (11th argument) must be %d", 1);
  k = NA_SHAPE0(rblapack_difl);
  if (NA_TYPE(rblapack_difl) != NA_SFLOAT)
    rblapack_difl = na_change_type(rblapack_difl, NA_SFLOAT);
  difl = NA_PTR_TYPE(rblapack_difl, real*);
  if (!NA_IsNArray(rblapack_z))
    rb_raise(rb_eArgError, "z (13th argument) must be NArray");
  if (NA_RANK(rblapack_z) != 1)
    rb_raise(rb_eArgError, "rank of z (13th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_z) != k)
    rb_raise(rb_eRuntimeError, "shape 0 of z must be the same as shape 0 of difl");
  if (NA_TYPE(rblapack_z) != NA_SFLOAT)
    rblapack_z = na_change_type(rblapack_z, NA_SFLOAT);
  z = NA_PTR_TYPE(rblapack_z, real*);
  s = (real)NUM2DBL(rblapack_s);
  nl = NUM2INT(rblapack_nl);
  if (!NA_IsNArray(rblapack_perm))
    rb_raise(rb_eArgError, "perm (6th argument) must be NArray");
  if (NA_RANK(rblapack_perm) != 1)
    rb_raise(rb_eArgError, "rank of perm (6th argument) must be %d", 1);
  n = NA_SHAPE0(rblapack_perm);
  if (NA_TYPE(rblapack_perm) != NA_LINT)
    rblapack_perm = na_change_type(rblapack_perm, NA_LINT);
  perm = NA_PTR_TYPE(rblapack_perm, integer*);
  if (!NA_IsNArray(rblapack_poles))
    rb_raise(rb_eArgError, "poles (10th argument) must be NArray");
  if (NA_RANK(rblapack_poles) != 2)
    rb_raise(rb_eArgError, "rank of poles (10th argument) must be %d", 2);
  if (NA_SHAPE0(rblapack_poles) != ldgnum)
    rb_raise(rb_eRuntimeError, "shape 0 of poles must be the same as shape 0 of givnum");
  if (NA_SHAPE1(rblapack_poles) != (2))
    rb_raise(rb_eRuntimeError, "shape 1 of poles must be %d", 2);
  if (NA_TYPE(rblapack_poles) != NA_SFLOAT)
    rblapack_poles = na_change_type(rblapack_poles, NA_SFLOAT);
  poles = NA_PTR_TYPE(rblapack_poles, real*);
  c = (real)NUM2DBL(rblapack_c);
  sqre = NUM2INT(rblapack_sqre);
  if (!NA_IsNArray(rblapack_difr))
    rb_raise(rb_eArgError, "difr (12th argument) must be NArray");
  if (NA_RANK(rblapack_difr) != 2)
    rb_raise(rb_eArgError, "rank of difr (12th argument) must be %d", 2);
  if (NA_SHAPE0(rblapack_difr) != ldgnum)
    rb_raise(rb_eRuntimeError, "shape 0 of difr must be the same as shape 0 of givnum");
  if (NA_SHAPE1(rblapack_difr) != (2))
    rb_raise(rb_eRuntimeError, "shape 1 of difr must be %d", 2);
  if (NA_TYPE(rblapack_difr) != NA_SFLOAT)
    rblapack_difr = na_change_type(rblapack_difr, NA_SFLOAT);
  difr = NA_PTR_TYPE(rblapack_difr, real*);
  if (!NA_IsNArray(rblapack_givcol))
    rb_raise(rb_eArgError, "givcol (8th argument) must be NArray");
  if (NA_RANK(rblapack_givcol) != 2)
    rb_raise(rb_eArgError, "rank of givcol (8th argument) must be %d", 2);
  ldgcol = NA_SHAPE0(rblapack_givcol);
  if (NA_SHAPE1(rblapack_givcol) != (2))
    rb_raise(rb_eRuntimeError, "shape 1 of givcol must be %d", 2);
  if (NA_TYPE(rblapack_givcol) != NA_LINT)
    rblapack_givcol = na_change_type(rblapack_givcol, NA_LINT);
  givcol = NA_PTR_TYPE(rblapack_givcol, integer*);
  ldbx = n;
  {
    na_shape_t shape[2];
    shape[0] = ldb;
    shape[1] = nrhs;
    rblapack_b_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
  }
  b_out__ = NA_PTR_TYPE(rblapack_b_out__, complex*);
  MEMCPY(b_out__, b, complex, NA_TOTAL(rblapack_b));
  rblapack_b = rblapack_b_out__;
  b = b_out__;
  bx = ALLOC_N(complex, (ldbx)*(nrhs));
  rwork = ALLOC_N(real, (k*(1+nrhs) + 2*nrhs));

  clals0_(&icompq, &nl, &nr, &sqre, &nrhs, b, &ldb, bx, &ldbx, perm, &givptr, givcol, &ldgcol, givnum, &ldgnum, poles, difl, difr, z, &k, &c, &s, rwork, &info);

  free(bx);
  free(rwork);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(2, rblapack_info, rblapack_b);
}

void
init_lapack_clals0(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "clals0", rblapack_clals0, -1);
}