1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
|
#include "rb_lapack.h"
extern real clange_(char* norm, integer* m, integer* n, complex* a, integer* lda, real* work);
static VALUE
rblapack_clange(int argc, VALUE *argv, VALUE self){
VALUE rblapack_norm;
char norm;
VALUE rblapack_m;
integer m;
VALUE rblapack_a;
complex *a;
VALUE rblapack___out__;
real __out__;
real *work;
integer lda;
integer n;
integer lwork;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n __out__ = NumRu::Lapack.clange( norm, m, a, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n REAL FUNCTION CLANGE( NORM, M, N, A, LDA, WORK )\n\n* Purpose\n* =======\n*\n* CLANGE returns the value of the one norm, or the Frobenius norm, or\n* the infinity norm, or the element of largest absolute value of a\n* complex matrix A.\n*\n* Description\n* ===========\n*\n* CLANGE returns the value\n*\n* CLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'\n* (\n* ( norm1(A), NORM = '1', 'O' or 'o'\n* (\n* ( normI(A), NORM = 'I' or 'i'\n* (\n* ( normF(A), NORM = 'F', 'f', 'E' or 'e'\n*\n* where norm1 denotes the one norm of a matrix (maximum column sum),\n* normI denotes the infinity norm of a matrix (maximum row sum) and\n* normF denotes the Frobenius norm of a matrix (square root of sum of\n* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.\n*\n\n* Arguments\n* =========\n*\n* NORM (input) CHARACTER*1\n* Specifies the value to be returned in CLANGE as described\n* above.\n*\n* M (input) INTEGER\n* The number of rows of the matrix A. M >= 0. When M = 0,\n* CLANGE is set to zero.\n*\n* N (input) INTEGER\n* The number of columns of the matrix A. N >= 0. When N = 0,\n* CLANGE is set to zero.\n*\n* A (input) COMPLEX array, dimension (LDA,N)\n* The m by n matrix A.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(M,1).\n*\n* WORK (workspace) REAL array, dimension (MAX(1,LWORK)),\n* where LWORK >= M when NORM = 'I'; otherwise, WORK is not\n* referenced.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n __out__ = NumRu::Lapack.clange( norm, m, a, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 3 && argc != 3)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
rblapack_norm = argv[0];
rblapack_m = argv[1];
rblapack_a = argv[2];
if (argc == 3) {
} else if (rblapack_options != Qnil) {
} else {
}
norm = StringValueCStr(rblapack_norm)[0];
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (3th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_SCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_SCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, complex*);
m = NUM2INT(rblapack_m);
lwork = lsame_(&norm,"I") ? m : 0;
work = ALLOC_N(real, (MAX(1,lwork)));
__out__ = clange_(&norm, &m, &n, a, &lda, work);
free(work);
rblapack___out__ = rb_float_new((double)__out__);
return rblapack___out__;
}
void
init_lapack_clange(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "clange", rblapack_clange, -1);
}
|