1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
|
#include "rb_lapack.h"
extern real clanhf_(char* norm, char* transr, char* uplo, integer* n, doublecomplex* a, real* work);
static VALUE
rblapack_clanhf(int argc, VALUE *argv, VALUE self){
VALUE rblapack_norm;
char norm;
VALUE rblapack_transr;
char transr;
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_n;
integer n;
VALUE rblapack_a;
doublecomplex *a;
VALUE rblapack___out__;
real __out__;
real *work;
integer lwork;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n __out__ = NumRu::Lapack.clanhf( norm, transr, uplo, n, a, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n REAL FUNCTION CLANHF( NORM, TRANSR, UPLO, N, A, WORK )\n\n* Purpose\n* =======\n*\n* CLANHF returns the value of the one norm, or the Frobenius norm, or\n* the infinity norm, or the element of largest absolute value of a\n* complex Hermitian matrix A in RFP format.\n*\n* Description\n* ===========\n*\n* CLANHF returns the value\n*\n* CLANHF = ( max(abs(A(i,j))), NORM = 'M' or 'm'\n* (\n* ( norm1(A), NORM = '1', 'O' or 'o'\n* (\n* ( normI(A), NORM = 'I' or 'i'\n* (\n* ( normF(A), NORM = 'F', 'f', 'E' or 'e'\n*\n* where norm1 denotes the one norm of a matrix (maximum column sum),\n* normI denotes the infinity norm of a matrix (maximum row sum) and\n* normF denotes the Frobenius norm of a matrix (square root of sum of\n* squares). Note that max(abs(A(i,j))) is not a matrix norm.\n*\n\n* Arguments\n* =========\n*\n* NORM (input) CHARACTER\n* Specifies the value to be returned in CLANHF as described\n* above.\n*\n* TRANSR (input) CHARACTER\n* Specifies whether the RFP format of A is normal or\n* conjugate-transposed format.\n* = 'N': RFP format is Normal\n* = 'C': RFP format is Conjugate-transposed\n*\n* UPLO (input) CHARACTER\n* On entry, UPLO specifies whether the RFP matrix A came from\n* an upper or lower triangular matrix as follows:\n*\n* UPLO = 'U' or 'u' RFP A came from an upper triangular\n* matrix\n*\n* UPLO = 'L' or 'l' RFP A came from a lower triangular\n* matrix\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0. When N = 0, CLANHF is\n* set to zero.\n*\n* A (input) COMPLEX*16 array, dimension ( N*(N+1)/2 );\n* On entry, the matrix A in RFP Format.\n* RFP Format is described by TRANSR, UPLO and N as follows:\n* If TRANSR='N' then RFP A is (0:N,0:K-1) when N is even;\n* K=N/2. RFP A is (0:N-1,0:K) when N is odd; K=N/2. If\n* TRANSR = 'C' then RFP is the Conjugate-transpose of RFP A\n* as defined when TRANSR = 'N'. The contents of RFP A are\n* defined by UPLO as follows: If UPLO = 'U' the RFP A\n* contains the ( N*(N+1)/2 ) elements of upper packed A\n* either in normal or conjugate-transpose Format. If\n* UPLO = 'L' the RFP A contains the ( N*(N+1) /2 ) elements\n* of lower packed A either in normal or conjugate-transpose\n* Format. The LDA of RFP A is (N+1)/2 when TRANSR = 'C'. When\n* TRANSR is 'N' the LDA is N+1 when N is even and is N when\n* is odd. See the Note below for more details.\n* Unchanged on exit.\n*\n* WORK (workspace) REAL array, dimension (LWORK),\n* where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,\n* WORK is not referenced.\n*\n\n* Further Details\n* ===============\n*\n* We first consider Standard Packed Format when N is even.\n* We give an example where N = 6.\n*\n* AP is Upper AP is Lower\n*\n* 00 01 02 03 04 05 00\n* 11 12 13 14 15 10 11\n* 22 23 24 25 20 21 22\n* 33 34 35 30 31 32 33\n* 44 45 40 41 42 43 44\n* 55 50 51 52 53 54 55\n*\n*\n* Let TRANSR = 'N'. RFP holds AP as follows:\n* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last\n* three columns of AP upper. The lower triangle A(4:6,0:2) consists of\n* conjugate-transpose of the first three columns of AP upper.\n* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first\n* three columns of AP lower. The upper triangle A(0:2,0:2) consists of\n* conjugate-transpose of the last three columns of AP lower.\n* To denote conjugate we place -- above the element. This covers the\n* case N even and TRANSR = 'N'.\n*\n* RFP A RFP A\n*\n* -- -- --\n* 03 04 05 33 43 53\n* -- --\n* 13 14 15 00 44 54\n* --\n* 23 24 25 10 11 55\n*\n* 33 34 35 20 21 22\n* --\n* 00 44 45 30 31 32\n* -- --\n* 01 11 55 40 41 42\n* -- -- --\n* 02 12 22 50 51 52\n*\n* Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-\n* transpose of RFP A above. One therefore gets:\n*\n*\n* RFP A RFP A\n*\n* -- -- -- -- -- -- -- -- -- --\n* 03 13 23 33 00 01 02 33 00 10 20 30 40 50\n* -- -- -- -- -- -- -- -- -- --\n* 04 14 24 34 44 11 12 43 44 11 21 31 41 51\n* -- -- -- -- -- -- -- -- -- --\n* 05 15 25 35 45 55 22 53 54 55 22 32 42 52\n*\n*\n* We next consider Standard Packed Format when N is odd.\n* We give an example where N = 5.\n*\n* AP is Upper AP is Lower\n*\n* 00 01 02 03 04 00\n* 11 12 13 14 10 11\n* 22 23 24 20 21 22\n* 33 34 30 31 32 33\n* 44 40 41 42 43 44\n*\n*\n* Let TRANSR = 'N'. RFP holds AP as follows:\n* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last\n* three columns of AP upper. The lower triangle A(3:4,0:1) consists of\n* conjugate-transpose of the first two columns of AP upper.\n* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first\n* three columns of AP lower. The upper triangle A(0:1,1:2) consists of\n* conjugate-transpose of the last two columns of AP lower.\n* To denote conjugate we place -- above the element. This covers the\n* case N odd and TRANSR = 'N'.\n*\n* RFP A RFP A\n*\n* -- --\n* 02 03 04 00 33 43\n* --\n* 12 13 14 10 11 44\n*\n* 22 23 24 20 21 22\n* --\n* 00 33 34 30 31 32\n* -- --\n* 01 11 44 40 41 42\n*\n* Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-\n* transpose of RFP A above. One therefore gets:\n*\n*\n* RFP A RFP A\n*\n* -- -- -- -- -- -- -- -- --\n* 02 12 22 00 01 00 10 20 30 40 50\n* -- -- -- -- -- -- -- -- --\n* 03 13 23 33 11 33 11 21 31 41 51\n* -- -- -- -- -- -- -- -- --\n* 04 14 24 34 44 43 44 22 32 42 52\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n __out__ = NumRu::Lapack.clanhf( norm, transr, uplo, n, a, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 5 && argc != 5)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
rblapack_norm = argv[0];
rblapack_transr = argv[1];
rblapack_uplo = argv[2];
rblapack_n = argv[3];
rblapack_a = argv[4];
if (argc == 5) {
} else if (rblapack_options != Qnil) {
} else {
}
norm = StringValueCStr(rblapack_norm)[0];
uplo = StringValueCStr(rblapack_uplo)[0];
transr = StringValueCStr(rblapack_transr)[0];
n = NUM2INT(rblapack_n);
lwork = ((lsame_(&norm,"I")) || ((('1') || ('o')))) ? n : 0;
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (5th argument) must be NArray");
if (NA_RANK(rblapack_a) != 1)
rb_raise(rb_eArgError, "rank of a (5th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_a) != (n*(n+1)/2))
rb_raise(rb_eRuntimeError, "shape 0 of a must be %d", n*(n+1)/2);
if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
work = ALLOC_N(real, (lwork));
__out__ = clanhf_(&norm, &transr, &uplo, &n, a, work);
free(work);
rblapack___out__ = rb_float_new((double)__out__);
return rblapack___out__;
}
void
init_lapack_clanhf(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "clanhf", rblapack_clanhf, -1);
}
|