File: clantb.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (80 lines) | stat: -rw-r--r-- 5,140 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#include "rb_lapack.h"

extern real clantb_(char* norm, char* uplo, char* diag, integer* n, integer* k, complex* ab, integer* ldab, real* work);


static VALUE
rblapack_clantb(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_norm;
  char norm; 
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_diag;
  char diag; 
  VALUE rblapack_k;
  integer k; 
  VALUE rblapack_ab;
  complex *ab; 
  VALUE rblapack___out__;
  real __out__; 
  real *work;

  integer ldab;
  integer n;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  __out__ = NumRu::Lapack.clantb( norm, uplo, diag, k, ab, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      REAL             FUNCTION CLANTB( NORM, UPLO, DIAG, N, K, AB, LDAB, WORK )\n\n*  Purpose\n*  =======\n*\n*  CLANTB  returns the value of the one norm,  or the Frobenius norm, or\n*  the  infinity norm,  or the element of  largest absolute value  of an\n*  n by n triangular band matrix A,  with ( k + 1 ) diagonals.\n*\n*  Description\n*  ===========\n*\n*  CLANTB returns the value\n*\n*     CLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm'\n*              (\n*              ( norm1(A),         NORM = '1', 'O' or 'o'\n*              (\n*              ( normI(A),         NORM = 'I' or 'i'\n*              (\n*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'\n*\n*  where  norm1  denotes the  one norm of a matrix (maximum column sum),\n*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and\n*  normF  denotes the  Frobenius norm of a matrix (square root of sum of\n*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.\n*\n\n*  Arguments\n*  =========\n*\n*  NORM    (input) CHARACTER*1\n*          Specifies the value to be returned in CLANTB as described\n*          above.\n*\n*  UPLO    (input) CHARACTER*1\n*          Specifies whether the matrix A is upper or lower triangular.\n*          = 'U':  Upper triangular\n*          = 'L':  Lower triangular\n*\n*  DIAG    (input) CHARACTER*1\n*          Specifies whether or not the matrix A is unit triangular.\n*          = 'N':  Non-unit triangular\n*          = 'U':  Unit triangular\n*\n*  N       (input) INTEGER\n*          The order of the matrix A.  N >= 0.  When N = 0, CLANTB is\n*          set to zero.\n*\n*  K       (input) INTEGER\n*          The number of super-diagonals of the matrix A if UPLO = 'U',\n*          or the number of sub-diagonals of the matrix A if UPLO = 'L'.\n*          K >= 0.\n*\n*  AB      (input) COMPLEX array, dimension (LDAB,N)\n*          The upper or lower triangular band matrix A, stored in the\n*          first k+1 rows of AB.  The j-th column of A is stored\n*          in the j-th column of the array AB as follows:\n*          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;\n*          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).\n*          Note that when DIAG = 'U', the elements of the array AB\n*          corresponding to the diagonal elements of the matrix A are\n*          not referenced, but are assumed to be one.\n*\n*  LDAB    (input) INTEGER\n*          The leading dimension of the array AB.  LDAB >= K+1.\n*\n*  WORK    (workspace) REAL array, dimension (MAX(1,LWORK)),\n*          where LWORK >= N when NORM = 'I'; otherwise, WORK is not\n*          referenced.\n*\n\n* =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  __out__ = NumRu::Lapack.clantb( norm, uplo, diag, k, ab, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 5 && argc != 5)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
  rblapack_norm = argv[0];
  rblapack_uplo = argv[1];
  rblapack_diag = argv[2];
  rblapack_k = argv[3];
  rblapack_ab = argv[4];
  if (argc == 5) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  norm = StringValueCStr(rblapack_norm)[0];
  diag = StringValueCStr(rblapack_diag)[0];
  if (!NA_IsNArray(rblapack_ab))
    rb_raise(rb_eArgError, "ab (5th argument) must be NArray");
  if (NA_RANK(rblapack_ab) != 2)
    rb_raise(rb_eArgError, "rank of ab (5th argument) must be %d", 2);
  ldab = NA_SHAPE0(rblapack_ab);
  n = NA_SHAPE1(rblapack_ab);
  if (NA_TYPE(rblapack_ab) != NA_SCOMPLEX)
    rblapack_ab = na_change_type(rblapack_ab, NA_SCOMPLEX);
  ab = NA_PTR_TYPE(rblapack_ab, complex*);
  uplo = StringValueCStr(rblapack_uplo)[0];
  k = NUM2INT(rblapack_k);
  work = ALLOC_N(real, (MAX(1,lsame_(&norm,"I") ? n : 0)));

  __out__ = clantb_(&norm, &uplo, &diag, &n, &k, ab, &ldab, work);

  free(work);
  rblapack___out__ = rb_float_new((double)__out__);
  return rblapack___out__;
}

void
init_lapack_clantb(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "clantb", rblapack_clantb, -1);
}