1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
|
#include "rb_lapack.h"
extern VOID claqsb_(char* uplo, integer* n, integer* kd, complex* ab, integer* ldab, real* s, real* scond, real* amax, char* equed);
static VALUE
rblapack_claqsb(int argc, VALUE *argv, VALUE self){
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_kd;
integer kd;
VALUE rblapack_ab;
complex *ab;
VALUE rblapack_s;
real *s;
VALUE rblapack_scond;
real scond;
VALUE rblapack_amax;
real amax;
VALUE rblapack_equed;
char equed;
VALUE rblapack_ab_out__;
complex *ab_out__;
integer ldab;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n equed, ab = NumRu::Lapack.claqsb( uplo, kd, ab, s, scond, amax, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CLAQSB( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, EQUED )\n\n* Purpose\n* =======\n*\n* CLAQSB equilibrates a symmetric band matrix A using the scaling\n* factors in the vector S.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* Specifies whether the upper or lower triangular part of the\n* symmetric matrix A is stored.\n* = 'U': Upper triangular\n* = 'L': Lower triangular\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* KD (input) INTEGER\n* The number of super-diagonals of the matrix A if UPLO = 'U',\n* or the number of sub-diagonals if UPLO = 'L'. KD >= 0.\n*\n* AB (input/output) COMPLEX array, dimension (LDAB,N)\n* On entry, the upper or lower triangle of the symmetric band\n* matrix A, stored in the first KD+1 rows of the array. The\n* j-th column of A is stored in the j-th column of the array AB\n* as follows:\n* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;\n* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).\n*\n* On exit, if INFO = 0, the triangular factor U or L from the\n* Cholesky factorization A = U'*U or A = L*L' of the band\n* matrix A, in the same storage format as A.\n*\n* LDAB (input) INTEGER\n* The leading dimension of the array AB. LDAB >= KD+1.\n*\n* S (input) REAL array, dimension (N)\n* The scale factors for A.\n*\n* SCOND (input) REAL\n* Ratio of the smallest S(i) to the largest S(i).\n*\n* AMAX (input) REAL\n* Absolute value of largest matrix entry.\n*\n* EQUED (output) CHARACTER*1\n* Specifies whether or not equilibration was done.\n* = 'N': No equilibration.\n* = 'Y': Equilibration was done, i.e., A has been replaced by\n* diag(S) * A * diag(S).\n*\n* Internal Parameters\n* ===================\n*\n* THRESH is a threshold value used to decide if scaling should be done\n* based on the ratio of the scaling factors. If SCOND < THRESH,\n* scaling is done.\n*\n* LARGE and SMALL are threshold values used to decide if scaling should\n* be done based on the absolute size of the largest matrix element.\n* If AMAX > LARGE or AMAX < SMALL, scaling is done.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n equed, ab = NumRu::Lapack.claqsb( uplo, kd, ab, s, scond, amax, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 6 && argc != 6)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
rblapack_uplo = argv[0];
rblapack_kd = argv[1];
rblapack_ab = argv[2];
rblapack_s = argv[3];
rblapack_scond = argv[4];
rblapack_amax = argv[5];
if (argc == 6) {
} else if (rblapack_options != Qnil) {
} else {
}
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_ab))
rb_raise(rb_eArgError, "ab (3th argument) must be NArray");
if (NA_RANK(rblapack_ab) != 2)
rb_raise(rb_eArgError, "rank of ab (3th argument) must be %d", 2);
ldab = NA_SHAPE0(rblapack_ab);
n = NA_SHAPE1(rblapack_ab);
if (NA_TYPE(rblapack_ab) != NA_SCOMPLEX)
rblapack_ab = na_change_type(rblapack_ab, NA_SCOMPLEX);
ab = NA_PTR_TYPE(rblapack_ab, complex*);
scond = (real)NUM2DBL(rblapack_scond);
kd = NUM2INT(rblapack_kd);
amax = (real)NUM2DBL(rblapack_amax);
if (!NA_IsNArray(rblapack_s))
rb_raise(rb_eArgError, "s (4th argument) must be NArray");
if (NA_RANK(rblapack_s) != 1)
rb_raise(rb_eArgError, "rank of s (4th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_s) != n)
rb_raise(rb_eRuntimeError, "shape 0 of s must be the same as shape 1 of ab");
if (NA_TYPE(rblapack_s) != NA_SFLOAT)
rblapack_s = na_change_type(rblapack_s, NA_SFLOAT);
s = NA_PTR_TYPE(rblapack_s, real*);
{
na_shape_t shape[2];
shape[0] = ldab;
shape[1] = n;
rblapack_ab_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
ab_out__ = NA_PTR_TYPE(rblapack_ab_out__, complex*);
MEMCPY(ab_out__, ab, complex, NA_TOTAL(rblapack_ab));
rblapack_ab = rblapack_ab_out__;
ab = ab_out__;
claqsb_(&uplo, &n, &kd, ab, &ldab, s, &scond, &amax, &equed);
rblapack_equed = rb_str_new(&equed,1);
return rb_ary_new3(2, rblapack_equed, rblapack_ab);
}
void
init_lapack_claqsb(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "claqsb", rblapack_claqsb, -1);
}
|