1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
|
#include "rb_lapack.h"
extern VOID clarcm_(integer* m, integer* n, real* a, integer* lda, complex* b, integer* ldb, complex* c, integer* ldc, real* rwork);
static VALUE
rblapack_clarcm(int argc, VALUE *argv, VALUE self){
VALUE rblapack_a;
real *a;
VALUE rblapack_b;
complex *b;
VALUE rblapack_c;
complex *c;
real *rwork;
integer lda;
integer m;
integer ldb;
integer n;
integer ldc;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n c = NumRu::Lapack.clarcm( a, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CLARCM( M, N, A, LDA, B, LDB, C, LDC, RWORK )\n\n* Purpose\n* =======\n*\n* CLARCM performs a very simple matrix-matrix multiplication:\n* C := A * B,\n* where A is M by M and real; B is M by N and complex;\n* C is M by N and complex.\n*\n\n* Arguments\n* =========\n*\n* M (input) INTEGER\n* The number of rows of the matrix A and of the matrix C.\n* M >= 0.\n*\n* N (input) INTEGER\n* The number of columns and rows of the matrix B and\n* the number of columns of the matrix C.\n* N >= 0.\n*\n* A (input) REAL array, dimension (LDA, M)\n* A contains the M by M matrix A.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >=max(1,M).\n*\n* B (input) REAL array, dimension (LDB, N)\n* B contains the M by N matrix B.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >=max(1,M).\n*\n* C (input) COMPLEX array, dimension (LDC, N)\n* C contains the M by N matrix C.\n*\n* LDC (input) INTEGER\n* The leading dimension of the array C. LDC >=max(1,M).\n*\n* RWORK (workspace) REAL array, dimension (2*M*N)\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n c = NumRu::Lapack.clarcm( a, b, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 2 && argc != 2)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 2)", argc);
rblapack_a = argv[0];
rblapack_b = argv[1];
if (argc == 2) {
} else if (rblapack_options != Qnil) {
} else {
}
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (1th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (1th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
m = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_SFLOAT)
rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
a = NA_PTR_TYPE(rblapack_a, real*);
ldc = MAX(1,m);
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (2th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (2th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
n = NA_SHAPE1(rblapack_b);
if (NA_TYPE(rblapack_b) != NA_SCOMPLEX)
rblapack_b = na_change_type(rblapack_b, NA_SCOMPLEX);
b = NA_PTR_TYPE(rblapack_b, complex*);
{
na_shape_t shape[2];
shape[0] = ldc;
shape[1] = n;
rblapack_c = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
c = NA_PTR_TYPE(rblapack_c, complex*);
rwork = ALLOC_N(real, (2*m*n));
clarcm_(&m, &n, a, &lda, b, &ldb, c, &ldc, rwork);
free(rwork);
return rblapack_c;
}
void
init_lapack_clarcm(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "clarcm", rblapack_clarcm, -1);
}
|