File: cpbcon.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (82 lines) | stat: -rw-r--r-- 4,625 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#include "rb_lapack.h"

extern VOID cpbcon_(char* uplo, integer* n, integer* kd, complex* ab, integer* ldab, real* anorm, real* rcond, complex* work, real* rwork, integer* info);


static VALUE
rblapack_cpbcon(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_kd;
  integer kd; 
  VALUE rblapack_ab;
  complex *ab; 
  VALUE rblapack_anorm;
  real anorm; 
  VALUE rblapack_rcond;
  real rcond; 
  VALUE rblapack_info;
  integer info; 
  complex *work;
  real *rwork;

  integer ldab;
  integer n;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  rcond, info = NumRu::Lapack.cpbcon( uplo, kd, ab, anorm, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE CPBCON( UPLO, N, KD, AB, LDAB, ANORM, RCOND, WORK, RWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  CPBCON estimates the reciprocal of the condition number (in the\n*  1-norm) of a complex Hermitian positive definite band matrix using\n*  the Cholesky factorization A = U**H*U or A = L*L**H computed by\n*  CPBTRF.\n*\n*  An estimate is obtained for norm(inv(A)), and the reciprocal of the\n*  condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).\n*\n\n*  Arguments\n*  =========\n*\n*  UPLO    (input) CHARACTER*1\n*          = 'U':  Upper triangular factor stored in AB;\n*          = 'L':  Lower triangular factor stored in AB.\n*\n*  N       (input) INTEGER\n*          The order of the matrix A.  N >= 0.\n*\n*  KD      (input) INTEGER\n*          The number of superdiagonals of the matrix A if UPLO = 'U',\n*          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.\n*\n*  AB      (input) COMPLEX array, dimension (LDAB,N)\n*          The triangular factor U or L from the Cholesky factorization\n*          A = U**H*U or A = L*L**H of the band matrix A, stored in the\n*          first KD+1 rows of the array.  The j-th column of U or L is\n*          stored in the j-th column of the array AB as follows:\n*          if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j;\n*          if UPLO ='L', AB(1+i-j,j)    = L(i,j) for j<=i<=min(n,j+kd).\n*\n*  LDAB    (input) INTEGER\n*          The leading dimension of the array AB.  LDAB >= KD+1.\n*\n*  ANORM   (input) REAL\n*          The 1-norm (or infinity-norm) of the Hermitian band matrix A.\n*\n*  RCOND   (output) REAL\n*          The reciprocal of the condition number of the matrix A,\n*          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an\n*          estimate of the 1-norm of inv(A) computed in this routine.\n*\n*  WORK    (workspace) COMPLEX array, dimension (2*N)\n*\n*  RWORK   (workspace) REAL array, dimension (N)\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  rcond, info = NumRu::Lapack.cpbcon( uplo, kd, ab, anorm, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 4 && argc != 4)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
  rblapack_uplo = argv[0];
  rblapack_kd = argv[1];
  rblapack_ab = argv[2];
  rblapack_anorm = argv[3];
  if (argc == 4) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  uplo = StringValueCStr(rblapack_uplo)[0];
  if (!NA_IsNArray(rblapack_ab))
    rb_raise(rb_eArgError, "ab (3th argument) must be NArray");
  if (NA_RANK(rblapack_ab) != 2)
    rb_raise(rb_eArgError, "rank of ab (3th argument) must be %d", 2);
  ldab = NA_SHAPE0(rblapack_ab);
  n = NA_SHAPE1(rblapack_ab);
  if (NA_TYPE(rblapack_ab) != NA_SCOMPLEX)
    rblapack_ab = na_change_type(rblapack_ab, NA_SCOMPLEX);
  ab = NA_PTR_TYPE(rblapack_ab, complex*);
  kd = NUM2INT(rblapack_kd);
  anorm = (real)NUM2DBL(rblapack_anorm);
  work = ALLOC_N(complex, (2*n));
  rwork = ALLOC_N(real, (n));

  cpbcon_(&uplo, &n, &kd, ab, &ldab, &anorm, &rcond, work, rwork, &info);

  free(work);
  free(rwork);
  rblapack_rcond = rb_float_new((double)rcond);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(2, rblapack_rcond, rblapack_info);
}

void
init_lapack_cpbcon(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "cpbcon", rblapack_cpbcon, -1);
}