1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
|
#include "rb_lapack.h"
extern VOID cpbsv_(char* uplo, integer* n, integer* kd, integer* nrhs, complex* ab, integer* ldab, complex* b, integer* ldb, integer* info);
static VALUE
rblapack_cpbsv(int argc, VALUE *argv, VALUE self){
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_kd;
integer kd;
VALUE rblapack_ab;
complex *ab;
VALUE rblapack_b;
complex *b;
VALUE rblapack_info;
integer info;
VALUE rblapack_ab_out__;
complex *ab_out__;
VALUE rblapack_b_out__;
complex *b_out__;
integer ldab;
integer n;
integer ldb;
integer nrhs;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n info, ab, b = NumRu::Lapack.cpbsv( uplo, kd, ab, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CPBSV( UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO )\n\n* Purpose\n* =======\n*\n* CPBSV computes the solution to a complex system of linear equations\n* A * X = B,\n* where A is an N-by-N Hermitian positive definite band matrix and X\n* and B are N-by-NRHS matrices.\n*\n* The Cholesky decomposition is used to factor A as\n* A = U**H * U, if UPLO = 'U', or\n* A = L * L**H, if UPLO = 'L',\n* where U is an upper triangular band matrix, and L is a lower\n* triangular band matrix, with the same number of superdiagonals or\n* subdiagonals as A. The factored form of A is then used to solve the\n* system of equations A * X = B.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangle of A is stored;\n* = 'L': Lower triangle of A is stored.\n*\n* N (input) INTEGER\n* The number of linear equations, i.e., the order of the\n* matrix A. N >= 0.\n*\n* KD (input) INTEGER\n* The number of superdiagonals of the matrix A if UPLO = 'U',\n* or the number of subdiagonals if UPLO = 'L'. KD >= 0.\n*\n* NRHS (input) INTEGER\n* The number of right hand sides, i.e., the number of columns\n* of the matrix B. NRHS >= 0.\n*\n* AB (input/output) COMPLEX array, dimension (LDAB,N)\n* On entry, the upper or lower triangle of the Hermitian band\n* matrix A, stored in the first KD+1 rows of the array. The\n* j-th column of A is stored in the j-th column of the array AB\n* as follows:\n* if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;\n* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD).\n* See below for further details.\n*\n* On exit, if INFO = 0, the triangular factor U or L from the\n* Cholesky factorization A = U**H*U or A = L*L**H of the band\n* matrix A, in the same storage format as A.\n*\n* LDAB (input) INTEGER\n* The leading dimension of the array AB. LDAB >= KD+1.\n*\n* B (input/output) COMPLEX array, dimension (LDB,NRHS)\n* On entry, the N-by-NRHS right hand side matrix B.\n* On exit, if INFO = 0, the N-by-NRHS solution matrix X.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,N).\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: if INFO = i, the leading minor of order i of A is not\n* positive definite, so the factorization could not be\n* completed, and the solution has not been computed.\n*\n\n* Further Details\n* ===============\n*\n* The band storage scheme is illustrated by the following example, when\n* N = 6, KD = 2, and UPLO = 'U':\n*\n* On entry: On exit:\n*\n* * * a13 a24 a35 a46 * * u13 u24 u35 u46\n* * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56\n* a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66\n*\n* Similarly, if UPLO = 'L' the format of A is as follows:\n*\n* On entry: On exit:\n*\n* a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66\n* a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 *\n* a31 a42 a53 a64 * * l31 l42 l53 l64 * *\n*\n* Array elements marked * are not used by the routine.\n*\n* =====================================================================\n*\n* .. External Functions ..\n LOGICAL LSAME\n EXTERNAL LSAME\n* ..\n* .. External Subroutines ..\n EXTERNAL CPBTRF, CPBTRS, XERBLA\n* ..\n* .. Intrinsic Functions ..\n INTRINSIC MAX\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n info, ab, b = NumRu::Lapack.cpbsv( uplo, kd, ab, b, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 4 && argc != 4)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
rblapack_uplo = argv[0];
rblapack_kd = argv[1];
rblapack_ab = argv[2];
rblapack_b = argv[3];
if (argc == 4) {
} else if (rblapack_options != Qnil) {
} else {
}
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_ab))
rb_raise(rb_eArgError, "ab (3th argument) must be NArray");
if (NA_RANK(rblapack_ab) != 2)
rb_raise(rb_eArgError, "rank of ab (3th argument) must be %d", 2);
ldab = NA_SHAPE0(rblapack_ab);
n = NA_SHAPE1(rblapack_ab);
if (NA_TYPE(rblapack_ab) != NA_SCOMPLEX)
rblapack_ab = na_change_type(rblapack_ab, NA_SCOMPLEX);
ab = NA_PTR_TYPE(rblapack_ab, complex*);
kd = NUM2INT(rblapack_kd);
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (4th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (4th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
nrhs = NA_SHAPE1(rblapack_b);
if (NA_TYPE(rblapack_b) != NA_SCOMPLEX)
rblapack_b = na_change_type(rblapack_b, NA_SCOMPLEX);
b = NA_PTR_TYPE(rblapack_b, complex*);
{
na_shape_t shape[2];
shape[0] = ldab;
shape[1] = n;
rblapack_ab_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
ab_out__ = NA_PTR_TYPE(rblapack_ab_out__, complex*);
MEMCPY(ab_out__, ab, complex, NA_TOTAL(rblapack_ab));
rblapack_ab = rblapack_ab_out__;
ab = ab_out__;
{
na_shape_t shape[2];
shape[0] = ldb;
shape[1] = nrhs;
rblapack_b_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
b_out__ = NA_PTR_TYPE(rblapack_b_out__, complex*);
MEMCPY(b_out__, b, complex, NA_TOTAL(rblapack_b));
rblapack_b = rblapack_b_out__;
b = b_out__;
cpbsv_(&uplo, &n, &kd, &nrhs, ab, &ldab, b, &ldb, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(3, rblapack_info, rblapack_ab, rblapack_b);
}
void
init_lapack_cpbsv(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "cpbsv", rblapack_cpbsv, -1);
}
|