1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
|
#include "rb_lapack.h"
extern VOID cpftrs_(char* transr, char* uplo, integer* n, integer* nrhs, complex* a, complex* b, integer* ldb, integer* info);
static VALUE
rblapack_cpftrs(int argc, VALUE *argv, VALUE self){
VALUE rblapack_transr;
char transr;
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_n;
integer n;
VALUE rblapack_a;
complex *a;
VALUE rblapack_b;
complex *b;
VALUE rblapack_info;
integer info;
VALUE rblapack_b_out__;
complex *b_out__;
integer ldb;
integer nrhs;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n info, b = NumRu::Lapack.cpftrs( transr, uplo, n, a, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CPFTRS( TRANSR, UPLO, N, NRHS, A, B, LDB, INFO )\n\n* Purpose\n* =======\n*\n* CPFTRS solves a system of linear equations A*X = B with a Hermitian\n* positive definite matrix A using the Cholesky factorization\n* A = U**H*U or A = L*L**H computed by CPFTRF.\n*\n\n* Arguments\n* =========\n*\n* TRANSR (input) CHARACTER*1\n* = 'N': The Normal TRANSR of RFP A is stored;\n* = 'C': The Conjugate-transpose TRANSR of RFP A is stored.\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangle of RFP A is stored;\n* = 'L': Lower triangle of RFP A is stored.\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* NRHS (input) INTEGER\n* The number of right hand sides, i.e., the number of columns\n* of the matrix B. NRHS >= 0.\n*\n* A (input) COMPLEX array, dimension ( N*(N+1)/2 );\n* The triangular factor U or L from the Cholesky factorization\n* of RFP A = U**H*U or RFP A = L*L**H, as computed by CPFTRF.\n* See note below for more details about RFP A.\n*\n* B (input/output) COMPLEX array, dimension (LDB,NRHS)\n* On entry, the right hand side matrix B.\n* On exit, the solution matrix X.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,N).\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n\n* Further Details\n* ===============\n*\n* We first consider Standard Packed Format when N is even.\n* We give an example where N = 6.\n*\n* AP is Upper AP is Lower\n*\n* 00 01 02 03 04 05 00\n* 11 12 13 14 15 10 11\n* 22 23 24 25 20 21 22\n* 33 34 35 30 31 32 33\n* 44 45 40 41 42 43 44\n* 55 50 51 52 53 54 55\n*\n*\n* Let TRANSR = 'N'. RFP holds AP as follows:\n* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last\n* three columns of AP upper. The lower triangle A(4:6,0:2) consists of\n* conjugate-transpose of the first three columns of AP upper.\n* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first\n* three columns of AP lower. The upper triangle A(0:2,0:2) consists of\n* conjugate-transpose of the last three columns of AP lower.\n* To denote conjugate we place -- above the element. This covers the\n* case N even and TRANSR = 'N'.\n*\n* RFP A RFP A\n*\n* -- -- --\n* 03 04 05 33 43 53\n* -- --\n* 13 14 15 00 44 54\n* --\n* 23 24 25 10 11 55\n*\n* 33 34 35 20 21 22\n* --\n* 00 44 45 30 31 32\n* -- --\n* 01 11 55 40 41 42\n* -- -- --\n* 02 12 22 50 51 52\n*\n* Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-\n* transpose of RFP A above. One therefore gets:\n*\n*\n* RFP A RFP A\n*\n* -- -- -- -- -- -- -- -- -- --\n* 03 13 23 33 00 01 02 33 00 10 20 30 40 50\n* -- -- -- -- -- -- -- -- -- --\n* 04 14 24 34 44 11 12 43 44 11 21 31 41 51\n* -- -- -- -- -- -- -- -- -- --\n* 05 15 25 35 45 55 22 53 54 55 22 32 42 52\n*\n*\n* We next consider Standard Packed Format when N is odd.\n* We give an example where N = 5.\n*\n* AP is Upper AP is Lower\n*\n* 00 01 02 03 04 00\n* 11 12 13 14 10 11\n* 22 23 24 20 21 22\n* 33 34 30 31 32 33\n* 44 40 41 42 43 44\n*\n*\n* Let TRANSR = 'N'. RFP holds AP as follows:\n* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last\n* three columns of AP upper. The lower triangle A(3:4,0:1) consists of\n* conjugate-transpose of the first two columns of AP upper.\n* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first\n* three columns of AP lower. The upper triangle A(0:1,1:2) consists of\n* conjugate-transpose of the last two columns of AP lower.\n* To denote conjugate we place -- above the element. This covers the\n* case N odd and TRANSR = 'N'.\n*\n* RFP A RFP A\n*\n* -- --\n* 02 03 04 00 33 43\n* --\n* 12 13 14 10 11 44\n*\n* 22 23 24 20 21 22\n* --\n* 00 33 34 30 31 32\n* -- --\n* 01 11 44 40 41 42\n*\n* Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-\n* transpose of RFP A above. One therefore gets:\n*\n*\n* RFP A RFP A\n*\n* -- -- -- -- -- -- -- -- --\n* 02 12 22 00 01 00 10 20 30 40 50\n* -- -- -- -- -- -- -- -- --\n* 03 13 23 33 11 33 11 21 31 41 51\n* -- -- -- -- -- -- -- -- --\n* 04 14 24 34 44 43 44 22 32 42 52\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n info, b = NumRu::Lapack.cpftrs( transr, uplo, n, a, b, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 5 && argc != 5)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
rblapack_transr = argv[0];
rblapack_uplo = argv[1];
rblapack_n = argv[2];
rblapack_a = argv[3];
rblapack_b = argv[4];
if (argc == 5) {
} else if (rblapack_options != Qnil) {
} else {
}
transr = StringValueCStr(rblapack_transr)[0];
n = NUM2INT(rblapack_n);
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (5th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (5th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
nrhs = NA_SHAPE1(rblapack_b);
if (NA_TYPE(rblapack_b) != NA_SCOMPLEX)
rblapack_b = na_change_type(rblapack_b, NA_SCOMPLEX);
b = NA_PTR_TYPE(rblapack_b, complex*);
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (4th argument) must be NArray");
if (NA_RANK(rblapack_a) != 1)
rb_raise(rb_eArgError, "rank of a (4th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_a) != (n*(n+1)/2))
rb_raise(rb_eRuntimeError, "shape 0 of a must be %d", n*(n+1)/2);
if (NA_TYPE(rblapack_a) != NA_SCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_SCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, complex*);
{
na_shape_t shape[2];
shape[0] = ldb;
shape[1] = nrhs;
rblapack_b_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
b_out__ = NA_PTR_TYPE(rblapack_b_out__, complex*);
MEMCPY(b_out__, b, complex, NA_TOTAL(rblapack_b));
rblapack_b = rblapack_b_out__;
b = b_out__;
cpftrs_(&transr, &uplo, &n, &nrhs, a, b, &ldb, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(2, rblapack_info, rblapack_b);
}
void
init_lapack_cpftrs(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "cpftrs", rblapack_cpftrs, -1);
}
|