1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
#include "rb_lapack.h"
extern VOID cpprfs_(char* uplo, integer* n, integer* nrhs, complex* ap, complex* afp, complex* b, integer* ldb, complex* x, integer* ldx, real* ferr, real* berr, complex* work, real* rwork, integer* info);
static VALUE
rblapack_cpprfs(int argc, VALUE *argv, VALUE self){
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_ap;
complex *ap;
VALUE rblapack_afp;
complex *afp;
VALUE rblapack_b;
complex *b;
VALUE rblapack_x;
complex *x;
VALUE rblapack_ferr;
real *ferr;
VALUE rblapack_berr;
real *berr;
VALUE rblapack_info;
integer info;
VALUE rblapack_x_out__;
complex *x_out__;
complex *work;
real *rwork;
integer ldb;
integer nrhs;
integer ldx;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n ferr, berr, info, x = NumRu::Lapack.cpprfs( uplo, ap, afp, b, x, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )\n\n* Purpose\n* =======\n*\n* CPPRFS improves the computed solution to a system of linear\n* equations when the coefficient matrix is Hermitian positive definite\n* and packed, and provides error bounds and backward error estimates\n* for the solution.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangle of A is stored;\n* = 'L': Lower triangle of A is stored.\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* NRHS (input) INTEGER\n* The number of right hand sides, i.e., the number of columns\n* of the matrices B and X. NRHS >= 0.\n*\n* AP (input) COMPLEX array, dimension (N*(N+1)/2)\n* The upper or lower triangle of the Hermitian matrix A, packed\n* columnwise in a linear array. The j-th column of A is stored\n* in the array AP as follows:\n* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.\n*\n* AFP (input) COMPLEX array, dimension (N*(N+1)/2)\n* The triangular factor U or L from the Cholesky factorization\n* A = U**H*U or A = L*L**H, as computed by SPPTRF/CPPTRF,\n* packed columnwise in a linear array in the same format as A\n* (see AP).\n*\n* B (input) COMPLEX array, dimension (LDB,NRHS)\n* The right hand side matrix B.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,N).\n*\n* X (input/output) COMPLEX array, dimension (LDX,NRHS)\n* On entry, the solution matrix X, as computed by CPPTRS.\n* On exit, the improved solution matrix X.\n*\n* LDX (input) INTEGER\n* The leading dimension of the array X. LDX >= max(1,N).\n*\n* FERR (output) REAL array, dimension (NRHS)\n* The estimated forward error bound for each solution vector\n* X(j) (the j-th column of the solution matrix X).\n* If XTRUE is the true solution corresponding to X(j), FERR(j)\n* is an estimated upper bound for the magnitude of the largest\n* element in (X(j) - XTRUE) divided by the magnitude of the\n* largest element in X(j). The estimate is as reliable as\n* the estimate for RCOND, and is almost always a slight\n* overestimate of the true error.\n*\n* BERR (output) REAL array, dimension (NRHS)\n* The componentwise relative backward error of each solution\n* vector X(j) (i.e., the smallest relative change in\n* any element of A or B that makes X(j) an exact solution).\n*\n* WORK (workspace) COMPLEX array, dimension (2*N)\n*\n* RWORK (workspace) REAL array, dimension (N)\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n* Internal Parameters\n* ===================\n*\n* ITMAX is the maximum number of steps of iterative refinement.\n*\n\n* ====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n ferr, berr, info, x = NumRu::Lapack.cpprfs( uplo, ap, afp, b, x, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 5 && argc != 5)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
rblapack_uplo = argv[0];
rblapack_ap = argv[1];
rblapack_afp = argv[2];
rblapack_b = argv[3];
rblapack_x = argv[4];
if (argc == 5) {
} else if (rblapack_options != Qnil) {
} else {
}
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (4th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (4th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
nrhs = NA_SHAPE1(rblapack_b);
if (NA_TYPE(rblapack_b) != NA_SCOMPLEX)
rblapack_b = na_change_type(rblapack_b, NA_SCOMPLEX);
b = NA_PTR_TYPE(rblapack_b, complex*);
n = ldb;
if (!NA_IsNArray(rblapack_ap))
rb_raise(rb_eArgError, "ap (2th argument) must be NArray");
if (NA_RANK(rblapack_ap) != 1)
rb_raise(rb_eArgError, "rank of ap (2th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_ap) != (n*(n+1)/2))
rb_raise(rb_eRuntimeError, "shape 0 of ap must be %d", n*(n+1)/2);
if (NA_TYPE(rblapack_ap) != NA_SCOMPLEX)
rblapack_ap = na_change_type(rblapack_ap, NA_SCOMPLEX);
ap = NA_PTR_TYPE(rblapack_ap, complex*);
if (!NA_IsNArray(rblapack_x))
rb_raise(rb_eArgError, "x (5th argument) must be NArray");
if (NA_RANK(rblapack_x) != 2)
rb_raise(rb_eArgError, "rank of x (5th argument) must be %d", 2);
ldx = NA_SHAPE0(rblapack_x);
if (NA_SHAPE1(rblapack_x) != nrhs)
rb_raise(rb_eRuntimeError, "shape 1 of x must be the same as shape 1 of b");
if (NA_TYPE(rblapack_x) != NA_SCOMPLEX)
rblapack_x = na_change_type(rblapack_x, NA_SCOMPLEX);
x = NA_PTR_TYPE(rblapack_x, complex*);
if (!NA_IsNArray(rblapack_afp))
rb_raise(rb_eArgError, "afp (3th argument) must be NArray");
if (NA_RANK(rblapack_afp) != 1)
rb_raise(rb_eArgError, "rank of afp (3th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_afp) != (n*(n+1)/2))
rb_raise(rb_eRuntimeError, "shape 0 of afp must be %d", n*(n+1)/2);
if (NA_TYPE(rblapack_afp) != NA_SCOMPLEX)
rblapack_afp = na_change_type(rblapack_afp, NA_SCOMPLEX);
afp = NA_PTR_TYPE(rblapack_afp, complex*);
{
na_shape_t shape[1];
shape[0] = nrhs;
rblapack_ferr = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
ferr = NA_PTR_TYPE(rblapack_ferr, real*);
{
na_shape_t shape[1];
shape[0] = nrhs;
rblapack_berr = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
berr = NA_PTR_TYPE(rblapack_berr, real*);
{
na_shape_t shape[2];
shape[0] = ldx;
shape[1] = nrhs;
rblapack_x_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
x_out__ = NA_PTR_TYPE(rblapack_x_out__, complex*);
MEMCPY(x_out__, x, complex, NA_TOTAL(rblapack_x));
rblapack_x = rblapack_x_out__;
x = x_out__;
work = ALLOC_N(complex, (2*n));
rwork = ALLOC_N(real, (n));
cpprfs_(&uplo, &n, &nrhs, ap, afp, b, &ldb, x, &ldx, ferr, berr, work, rwork, &info);
free(work);
free(rwork);
rblapack_info = INT2NUM(info);
return rb_ary_new3(4, rblapack_ferr, rblapack_berr, rblapack_info, rblapack_x);
}
void
init_lapack_cpprfs(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "cpprfs", rblapack_cpprfs, -1);
}
|