1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
|
#include "rb_lapack.h"
extern VOID cpptri_(char* uplo, integer* n, complex* ap, integer* info);
static VALUE
rblapack_cpptri(int argc, VALUE *argv, VALUE self){
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_n;
integer n;
VALUE rblapack_ap;
complex *ap;
VALUE rblapack_info;
integer info;
VALUE rblapack_ap_out__;
complex *ap_out__;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n info, ap = NumRu::Lapack.cpptri( uplo, n, ap, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CPPTRI( UPLO, N, AP, INFO )\n\n* Purpose\n* =======\n*\n* CPPTRI computes the inverse of a complex Hermitian positive definite\n* matrix A using the Cholesky factorization A = U**H*U or A = L*L**H\n* computed by CPPTRF.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangular factor is stored in AP;\n* = 'L': Lower triangular factor is stored in AP.\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* AP (input/output) COMPLEX array, dimension (N*(N+1)/2)\n* On entry, the triangular factor U or L from the Cholesky\n* factorization A = U**H*U or A = L*L**H, packed columnwise as\n* a linear array. The j-th column of U or L is stored in the\n* array AP as follows:\n* if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;\n* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.\n*\n* On exit, the upper or lower triangle of the (Hermitian)\n* inverse of A, overwriting the input factor U or L.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: if INFO = i, the (i,i) element of the factor U or L is\n* zero, and the inverse could not be computed.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n info, ap = NumRu::Lapack.cpptri( uplo, n, ap, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 3 && argc != 3)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
rblapack_uplo = argv[0];
rblapack_n = argv[1];
rblapack_ap = argv[2];
if (argc == 3) {
} else if (rblapack_options != Qnil) {
} else {
}
uplo = StringValueCStr(rblapack_uplo)[0];
n = NUM2INT(rblapack_n);
if (!NA_IsNArray(rblapack_ap))
rb_raise(rb_eArgError, "ap (3th argument) must be NArray");
if (NA_RANK(rblapack_ap) != 1)
rb_raise(rb_eArgError, "rank of ap (3th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_ap) != (n*(n+1)/2))
rb_raise(rb_eRuntimeError, "shape 0 of ap must be %d", n*(n+1)/2);
if (NA_TYPE(rblapack_ap) != NA_SCOMPLEX)
rblapack_ap = na_change_type(rblapack_ap, NA_SCOMPLEX);
ap = NA_PTR_TYPE(rblapack_ap, complex*);
{
na_shape_t shape[1];
shape[0] = n*(n+1)/2;
rblapack_ap_out__ = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
}
ap_out__ = NA_PTR_TYPE(rblapack_ap_out__, complex*);
MEMCPY(ap_out__, ap, complex, NA_TOTAL(rblapack_ap));
rblapack_ap = rblapack_ap_out__;
ap = ap_out__;
cpptri_(&uplo, &n, ap, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(2, rblapack_info, rblapack_ap);
}
void
init_lapack_cpptri(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "cpptri", rblapack_cpptri, -1);
}
|