1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
#include "rb_lapack.h"
extern VOID cptsvx_(char* fact, integer* n, integer* nrhs, real* d, complex* e, real* df, complex* ef, complex* b, integer* ldb, complex* x, integer* ldx, real* rcond, real* ferr, real* berr, complex* work, real* rwork, integer* info);
static VALUE
rblapack_cptsvx(int argc, VALUE *argv, VALUE self){
VALUE rblapack_fact;
char fact;
VALUE rblapack_d;
real *d;
VALUE rblapack_e;
complex *e;
VALUE rblapack_df;
real *df;
VALUE rblapack_ef;
complex *ef;
VALUE rblapack_b;
complex *b;
VALUE rblapack_x;
complex *x;
VALUE rblapack_rcond;
real rcond;
VALUE rblapack_ferr;
real *ferr;
VALUE rblapack_berr;
real *berr;
VALUE rblapack_info;
integer info;
VALUE rblapack_df_out__;
real *df_out__;
VALUE rblapack_ef_out__;
complex *ef_out__;
complex *work;
real *rwork;
integer n;
integer ldb;
integer nrhs;
integer ldx;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n x, rcond, ferr, berr, info, df, ef = NumRu::Lapack.cptsvx( fact, d, e, df, ef, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CPTSVX( FACT, N, NRHS, D, E, DF, EF, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO )\n\n* Purpose\n* =======\n*\n* CPTSVX uses the factorization A = L*D*L**H to compute the solution\n* to a complex system of linear equations A*X = B, where A is an\n* N-by-N Hermitian positive definite tridiagonal matrix and X and B\n* are N-by-NRHS matrices.\n*\n* Error bounds on the solution and a condition estimate are also\n* provided.\n*\n* Description\n* ===========\n*\n* The following steps are performed:\n*\n* 1. If FACT = 'N', the matrix A is factored as A = L*D*L**H, where L\n* is a unit lower bidiagonal matrix and D is diagonal. The\n* factorization can also be regarded as having the form\n* A = U**H*D*U.\n*\n* 2. If the leading i-by-i principal minor is not positive definite,\n* then the routine returns with INFO = i. Otherwise, the factored\n* form of A is used to estimate the condition number of the matrix\n* A. If the reciprocal of the condition number is less than machine\n* precision, INFO = N+1 is returned as a warning, but the routine\n* still goes on to solve for X and compute error bounds as\n* described below.\n*\n* 3. The system of equations is solved for X using the factored form\n* of A.\n*\n* 4. Iterative refinement is applied to improve the computed solution\n* matrix and calculate error bounds and backward error estimates\n* for it.\n*\n\n* Arguments\n* =========\n*\n* FACT (input) CHARACTER*1\n* Specifies whether or not the factored form of the matrix\n* A is supplied on entry.\n* = 'F': On entry, DF and EF contain the factored form of A.\n* D, E, DF, and EF will not be modified.\n* = 'N': The matrix A will be copied to DF and EF and\n* factored.\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* NRHS (input) INTEGER\n* The number of right hand sides, i.e., the number of columns\n* of the matrices B and X. NRHS >= 0.\n*\n* D (input) REAL array, dimension (N)\n* The n diagonal elements of the tridiagonal matrix A.\n*\n* E (input) COMPLEX array, dimension (N-1)\n* The (n-1) subdiagonal elements of the tridiagonal matrix A.\n*\n* DF (input or output) REAL array, dimension (N)\n* If FACT = 'F', then DF is an input argument and on entry\n* contains the n diagonal elements of the diagonal matrix D\n* from the L*D*L**H factorization of A.\n* If FACT = 'N', then DF is an output argument and on exit\n* contains the n diagonal elements of the diagonal matrix D\n* from the L*D*L**H factorization of A.\n*\n* EF (input or output) COMPLEX array, dimension (N-1)\n* If FACT = 'F', then EF is an input argument and on entry\n* contains the (n-1) subdiagonal elements of the unit\n* bidiagonal factor L from the L*D*L**H factorization of A.\n* If FACT = 'N', then EF is an output argument and on exit\n* contains the (n-1) subdiagonal elements of the unit\n* bidiagonal factor L from the L*D*L**H factorization of A.\n*\n* B (input) COMPLEX array, dimension (LDB,NRHS)\n* The N-by-NRHS right hand side matrix B.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,N).\n*\n* X (output) COMPLEX array, dimension (LDX,NRHS)\n* If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.\n*\n* LDX (input) INTEGER\n* The leading dimension of the array X. LDX >= max(1,N).\n*\n* RCOND (output) REAL\n* The reciprocal condition number of the matrix A. If RCOND\n* is less than the machine precision (in particular, if\n* RCOND = 0), the matrix is singular to working precision.\n* This condition is indicated by a return code of INFO > 0.\n*\n* FERR (output) REAL array, dimension (NRHS)\n* The forward error bound for each solution vector\n* X(j) (the j-th column of the solution matrix X).\n* If XTRUE is the true solution corresponding to X(j), FERR(j)\n* is an estimated upper bound for the magnitude of the largest\n* element in (X(j) - XTRUE) divided by the magnitude of the\n* largest element in X(j).\n*\n* BERR (output) REAL array, dimension (NRHS)\n* The componentwise relative backward error of each solution\n* vector X(j) (i.e., the smallest relative change in any\n* element of A or B that makes X(j) an exact solution).\n*\n* WORK (workspace) COMPLEX array, dimension (N)\n*\n* RWORK (workspace) REAL array, dimension (N)\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: if INFO = i, and i is\n* <= N: the leading minor of order i of A is\n* not positive definite, so the factorization\n* could not be completed, and the solution has not\n* been computed. RCOND = 0 is returned.\n* = N+1: U is nonsingular, but RCOND is less than machine\n* precision, meaning that the matrix is singular\n* to working precision. Nevertheless, the\n* solution and error bounds are computed because\n* there are a number of situations where the\n* computed solution can be more accurate than the\n* value of RCOND would suggest.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n x, rcond, ferr, berr, info, df, ef = NumRu::Lapack.cptsvx( fact, d, e, df, ef, b, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 6 && argc != 6)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
rblapack_fact = argv[0];
rblapack_d = argv[1];
rblapack_e = argv[2];
rblapack_df = argv[3];
rblapack_ef = argv[4];
rblapack_b = argv[5];
if (argc == 6) {
} else if (rblapack_options != Qnil) {
} else {
}
fact = StringValueCStr(rblapack_fact)[0];
if (!NA_IsNArray(rblapack_df))
rb_raise(rb_eArgError, "df (4th argument) must be NArray");
if (NA_RANK(rblapack_df) != 1)
rb_raise(rb_eArgError, "rank of df (4th argument) must be %d", 1);
n = NA_SHAPE0(rblapack_df);
if (NA_TYPE(rblapack_df) != NA_SFLOAT)
rblapack_df = na_change_type(rblapack_df, NA_SFLOAT);
df = NA_PTR_TYPE(rblapack_df, real*);
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (6th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (6th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
nrhs = NA_SHAPE1(rblapack_b);
if (NA_TYPE(rblapack_b) != NA_SCOMPLEX)
rblapack_b = na_change_type(rblapack_b, NA_SCOMPLEX);
b = NA_PTR_TYPE(rblapack_b, complex*);
if (!NA_IsNArray(rblapack_d))
rb_raise(rb_eArgError, "d (2th argument) must be NArray");
if (NA_RANK(rblapack_d) != 1)
rb_raise(rb_eArgError, "rank of d (2th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_d) != n)
rb_raise(rb_eRuntimeError, "shape 0 of d must be the same as shape 0 of df");
if (NA_TYPE(rblapack_d) != NA_SFLOAT)
rblapack_d = na_change_type(rblapack_d, NA_SFLOAT);
d = NA_PTR_TYPE(rblapack_d, real*);
if (!NA_IsNArray(rblapack_ef))
rb_raise(rb_eArgError, "ef (5th argument) must be NArray");
if (NA_RANK(rblapack_ef) != 1)
rb_raise(rb_eArgError, "rank of ef (5th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_ef) != (n-1))
rb_raise(rb_eRuntimeError, "shape 0 of ef must be %d", n-1);
if (NA_TYPE(rblapack_ef) != NA_SCOMPLEX)
rblapack_ef = na_change_type(rblapack_ef, NA_SCOMPLEX);
ef = NA_PTR_TYPE(rblapack_ef, complex*);
if (!NA_IsNArray(rblapack_e))
rb_raise(rb_eArgError, "e (3th argument) must be NArray");
if (NA_RANK(rblapack_e) != 1)
rb_raise(rb_eArgError, "rank of e (3th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_e) != (n-1))
rb_raise(rb_eRuntimeError, "shape 0 of e must be %d", n-1);
if (NA_TYPE(rblapack_e) != NA_SCOMPLEX)
rblapack_e = na_change_type(rblapack_e, NA_SCOMPLEX);
e = NA_PTR_TYPE(rblapack_e, complex*);
ldx = MAX(1,n);
{
na_shape_t shape[2];
shape[0] = ldx;
shape[1] = nrhs;
rblapack_x = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
x = NA_PTR_TYPE(rblapack_x, complex*);
{
na_shape_t shape[1];
shape[0] = nrhs;
rblapack_ferr = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
ferr = NA_PTR_TYPE(rblapack_ferr, real*);
{
na_shape_t shape[1];
shape[0] = nrhs;
rblapack_berr = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
berr = NA_PTR_TYPE(rblapack_berr, real*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_df_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
df_out__ = NA_PTR_TYPE(rblapack_df_out__, real*);
MEMCPY(df_out__, df, real, NA_TOTAL(rblapack_df));
rblapack_df = rblapack_df_out__;
df = df_out__;
{
na_shape_t shape[1];
shape[0] = n-1;
rblapack_ef_out__ = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
}
ef_out__ = NA_PTR_TYPE(rblapack_ef_out__, complex*);
MEMCPY(ef_out__, ef, complex, NA_TOTAL(rblapack_ef));
rblapack_ef = rblapack_ef_out__;
ef = ef_out__;
work = ALLOC_N(complex, (n));
rwork = ALLOC_N(real, (n));
cptsvx_(&fact, &n, &nrhs, d, e, df, ef, b, &ldb, x, &ldx, &rcond, ferr, berr, work, rwork, &info);
free(work);
free(rwork);
rblapack_rcond = rb_float_new((double)rcond);
rblapack_info = INT2NUM(info);
return rb_ary_new3(7, rblapack_x, rblapack_rcond, rblapack_ferr, rblapack_berr, rblapack_info, rblapack_df, rblapack_ef);
}
void
init_lapack_cptsvx(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "cptsvx", rblapack_cptsvx, -1);
}
|