File: cpttrf.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (93 lines) | stat: -rw-r--r-- 4,347 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#include "rb_lapack.h"

extern VOID cpttrf_(integer* n, real* d, complex* e, integer* info);


static VALUE
rblapack_cpttrf(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_d;
  real *d; 
  VALUE rblapack_e;
  complex *e; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_d_out__;
  real *d_out__;
  VALUE rblapack_e_out__;
  complex *e_out__;

  integer n;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, d, e = NumRu::Lapack.cpttrf( d, e, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE CPTTRF( N, D, E, INFO )\n\n*  Purpose\n*  =======\n*\n*  CPTTRF computes the L*D*L' factorization of a complex Hermitian\n*  positive definite tridiagonal matrix A.  The factorization may also\n*  be regarded as having the form A = U'*D*U.\n*\n\n*  Arguments\n*  =========\n*\n*  N       (input) INTEGER\n*          The order of the matrix A.  N >= 0.\n*\n*  D       (input/output) REAL array, dimension (N)\n*          On entry, the n diagonal elements of the tridiagonal matrix\n*          A.  On exit, the n diagonal elements of the diagonal matrix\n*          D from the L*D*L' factorization of A.\n*\n*  E       (input/output) COMPLEX array, dimension (N-1)\n*          On entry, the (n-1) subdiagonal elements of the tridiagonal\n*          matrix A.  On exit, the (n-1) subdiagonal elements of the\n*          unit bidiagonal factor L from the L*D*L' factorization of A.\n*          E can also be regarded as the superdiagonal of the unit\n*          bidiagonal factor U from the U'*D*U factorization of A.\n*\n*  INFO    (output) INTEGER\n*          = 0: successful exit\n*          < 0: if INFO = -k, the k-th argument had an illegal value\n*          > 0: if INFO = k, the leading minor of order k is not\n*               positive definite; if k < N, the factorization could not\n*               be completed, while if k = N, the factorization was\n*               completed, but D(N) <= 0.\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, d, e = NumRu::Lapack.cpttrf( d, e, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 2 && argc != 2)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 2)", argc);
  rblapack_d = argv[0];
  rblapack_e = argv[1];
  if (argc == 2) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  if (!NA_IsNArray(rblapack_d))
    rb_raise(rb_eArgError, "d (1th argument) must be NArray");
  if (NA_RANK(rblapack_d) != 1)
    rb_raise(rb_eArgError, "rank of d (1th argument) must be %d", 1);
  n = NA_SHAPE0(rblapack_d);
  if (NA_TYPE(rblapack_d) != NA_SFLOAT)
    rblapack_d = na_change_type(rblapack_d, NA_SFLOAT);
  d = NA_PTR_TYPE(rblapack_d, real*);
  if (!NA_IsNArray(rblapack_e))
    rb_raise(rb_eArgError, "e (2th argument) must be NArray");
  if (NA_RANK(rblapack_e) != 1)
    rb_raise(rb_eArgError, "rank of e (2th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_e) != (n-1))
    rb_raise(rb_eRuntimeError, "shape 0 of e must be %d", n-1);
  if (NA_TYPE(rblapack_e) != NA_SCOMPLEX)
    rblapack_e = na_change_type(rblapack_e, NA_SCOMPLEX);
  e = NA_PTR_TYPE(rblapack_e, complex*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_d_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  d_out__ = NA_PTR_TYPE(rblapack_d_out__, real*);
  MEMCPY(d_out__, d, real, NA_TOTAL(rblapack_d));
  rblapack_d = rblapack_d_out__;
  d = d_out__;
  {
    na_shape_t shape[1];
    shape[0] = n-1;
    rblapack_e_out__ = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
  }
  e_out__ = NA_PTR_TYPE(rblapack_e_out__, complex*);
  MEMCPY(e_out__, e, complex, NA_TOTAL(rblapack_e));
  rblapack_e = rblapack_e_out__;
  e = e_out__;

  cpttrf_(&n, d, e, &info);

  rblapack_info = INT2NUM(info);
  return rb_ary_new3(3, rblapack_info, rblapack_d, rblapack_e);
}

void
init_lapack_cpttrf(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "cpttrf", rblapack_cpttrf, -1);
}