1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
|
#include "rb_lapack.h"
extern VOID cspr_(char* uplo, integer* n, complex* alpha, complex* x, integer* incx, complex* ap);
static VALUE
rblapack_cspr(int argc, VALUE *argv, VALUE self){
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_n;
integer n;
VALUE rblapack_alpha;
complex alpha;
VALUE rblapack_x;
complex *x;
VALUE rblapack_incx;
integer incx;
VALUE rblapack_ap;
complex *ap;
VALUE rblapack_ap_out__;
complex *ap_out__;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n ap = NumRu::Lapack.cspr( uplo, n, alpha, x, incx, ap, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CSPR( UPLO, N, ALPHA, X, INCX, AP )\n\n* Purpose\n* =======\n*\n* CSPR performs the symmetric rank 1 operation\n*\n* A := alpha*x*conjg( x' ) + A,\n*\n* where alpha is a complex scalar, x is an n element vector and A is an\n* n by n symmetric matrix, supplied in packed form.\n*\n\n* Arguments\n* ==========\n*\n* UPLO (input) CHARACTER*1\n* On entry, UPLO specifies whether the upper or lower\n* triangular part of the matrix A is supplied in the packed\n* array AP as follows:\n*\n* UPLO = 'U' or 'u' The upper triangular part of A is\n* supplied in AP.\n*\n* UPLO = 'L' or 'l' The lower triangular part of A is\n* supplied in AP.\n*\n* Unchanged on exit.\n*\n* N (input) INTEGER\n* On entry, N specifies the order of the matrix A.\n* N must be at least zero.\n* Unchanged on exit.\n*\n* ALPHA (input) COMPLEX\n* On entry, ALPHA specifies the scalar alpha.\n* Unchanged on exit.\n*\n* X (input) COMPLEX array, dimension at least\n* ( 1 + ( N - 1 )*abs( INCX ) ).\n* Before entry, the incremented array X must contain the N-\n* element vector x.\n* Unchanged on exit.\n*\n* INCX (input) INTEGER\n* On entry, INCX specifies the increment for the elements of\n* X. INCX must not be zero.\n* Unchanged on exit.\n*\n* AP (input/output) COMPLEX array, dimension at least\n* ( ( N*( N + 1 ) )/2 ).\n* Before entry, with UPLO = 'U' or 'u', the array AP must\n* contain the upper triangular part of the symmetric matrix\n* packed sequentially, column by column, so that AP( 1 )\n* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )\n* and a( 2, 2 ) respectively, and so on. On exit, the array\n* AP is overwritten by the upper triangular part of the\n* updated matrix.\n* Before entry, with UPLO = 'L' or 'l', the array AP must\n* contain the lower triangular part of the symmetric matrix\n* packed sequentially, column by column, so that AP( 1 )\n* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )\n* and a( 3, 1 ) respectively, and so on. On exit, the array\n* AP is overwritten by the lower triangular part of the\n* updated matrix.\n* Note that the imaginary parts of the diagonal elements need\n* not be set, they are assumed to be zero, and on exit they\n* are set to zero.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n ap = NumRu::Lapack.cspr( uplo, n, alpha, x, incx, ap, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 6 && argc != 6)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
rblapack_uplo = argv[0];
rblapack_n = argv[1];
rblapack_alpha = argv[2];
rblapack_x = argv[3];
rblapack_incx = argv[4];
rblapack_ap = argv[5];
if (argc == 6) {
} else if (rblapack_options != Qnil) {
} else {
}
uplo = StringValueCStr(rblapack_uplo)[0];
alpha.r = (real)NUM2DBL(rb_funcall(rblapack_alpha, rb_intern("real"), 0));
alpha.i = (real)NUM2DBL(rb_funcall(rblapack_alpha, rb_intern("imag"), 0));
incx = NUM2INT(rblapack_incx);
n = NUM2INT(rblapack_n);
if (!NA_IsNArray(rblapack_ap))
rb_raise(rb_eArgError, "ap (6th argument) must be NArray");
if (NA_RANK(rblapack_ap) != 1)
rb_raise(rb_eArgError, "rank of ap (6th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_ap) != (( n*( n + 1 ) )/2))
rb_raise(rb_eRuntimeError, "shape 0 of ap must be %d", ( n*( n + 1 ) )/2);
if (NA_TYPE(rblapack_ap) != NA_SCOMPLEX)
rblapack_ap = na_change_type(rblapack_ap, NA_SCOMPLEX);
ap = NA_PTR_TYPE(rblapack_ap, complex*);
if (!NA_IsNArray(rblapack_x))
rb_raise(rb_eArgError, "x (4th argument) must be NArray");
if (NA_RANK(rblapack_x) != 1)
rb_raise(rb_eArgError, "rank of x (4th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_x) != (1 + ( n - 1 )*abs( incx )))
rb_raise(rb_eRuntimeError, "shape 0 of x must be %d", 1 + ( n - 1 )*abs( incx ));
if (NA_TYPE(rblapack_x) != NA_SCOMPLEX)
rblapack_x = na_change_type(rblapack_x, NA_SCOMPLEX);
x = NA_PTR_TYPE(rblapack_x, complex*);
{
na_shape_t shape[1];
shape[0] = ( n*( n + 1 ) )/2;
rblapack_ap_out__ = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
}
ap_out__ = NA_PTR_TYPE(rblapack_ap_out__, complex*);
MEMCPY(ap_out__, ap, complex, NA_TOTAL(rblapack_ap));
rblapack_ap = rblapack_ap_out__;
ap = ap_out__;
cspr_(&uplo, &n, &alpha, x, &incx, ap);
return rblapack_ap;
}
void
init_lapack_cspr(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "cspr", rblapack_cspr, -1);
}
|