File: csprfs.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (149 lines) | stat: -rw-r--r-- 8,586 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#include "rb_lapack.h"

extern VOID csprfs_(char* uplo, integer* n, integer* nrhs, complex* ap, complex* afp, integer* ipiv, complex* b, integer* ldb, complex* x, integer* ldx, real* ferr, real* berr, complex* work, real* rwork, integer* info);


static VALUE
rblapack_csprfs(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_ap;
  complex *ap; 
  VALUE rblapack_afp;
  complex *afp; 
  VALUE rblapack_ipiv;
  integer *ipiv; 
  VALUE rblapack_b;
  complex *b; 
  VALUE rblapack_x;
  complex *x; 
  VALUE rblapack_ferr;
  real *ferr; 
  VALUE rblapack_berr;
  real *berr; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_x_out__;
  complex *x_out__;
  complex *work;
  real *rwork;

  integer n;
  integer ldb;
  integer nrhs;
  integer ldx;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  ferr, berr, info, x = NumRu::Lapack.csprfs( uplo, ap, afp, ipiv, b, x, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE CSPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  CSPRFS improves the computed solution to a system of linear\n*  equations when the coefficient matrix is symmetric indefinite\n*  and packed, and provides error bounds and backward error estimates\n*  for the solution.\n*\n\n*  Arguments\n*  =========\n*\n*  UPLO    (input) CHARACTER*1\n*          = 'U':  Upper triangle of A is stored;\n*          = 'L':  Lower triangle of A is stored.\n*\n*  N       (input) INTEGER\n*          The order of the matrix A.  N >= 0.\n*\n*  NRHS    (input) INTEGER\n*          The number of right hand sides, i.e., the number of columns\n*          of the matrices B and X.  NRHS >= 0.\n*\n*  AP      (input) COMPLEX array, dimension (N*(N+1)/2)\n*          The upper or lower triangle of the symmetric matrix A, packed\n*          columnwise in a linear array.  The j-th column of A is stored\n*          in the array AP as follows:\n*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.\n*\n*  AFP     (input) COMPLEX array, dimension (N*(N+1)/2)\n*          The factored form of the matrix A.  AFP contains the block\n*          diagonal matrix D and the multipliers used to obtain the\n*          factor U or L from the factorization A = U*D*U**T or\n*          A = L*D*L**T as computed by CSPTRF, stored as a packed\n*          triangular matrix.\n*\n*  IPIV    (input) INTEGER array, dimension (N)\n*          Details of the interchanges and the block structure of D\n*          as determined by CSPTRF.\n*\n*  B       (input) COMPLEX array, dimension (LDB,NRHS)\n*          The right hand side matrix B.\n*\n*  LDB     (input) INTEGER\n*          The leading dimension of the array B.  LDB >= max(1,N).\n*\n*  X       (input/output) COMPLEX array, dimension (LDX,NRHS)\n*          On entry, the solution matrix X, as computed by CSPTRS.\n*          On exit, the improved solution matrix X.\n*\n*  LDX     (input) INTEGER\n*          The leading dimension of the array X.  LDX >= max(1,N).\n*\n*  FERR    (output) REAL array, dimension (NRHS)\n*          The estimated forward error bound for each solution vector\n*          X(j) (the j-th column of the solution matrix X).\n*          If XTRUE is the true solution corresponding to X(j), FERR(j)\n*          is an estimated upper bound for the magnitude of the largest\n*          element in (X(j) - XTRUE) divided by the magnitude of the\n*          largest element in X(j).  The estimate is as reliable as\n*          the estimate for RCOND, and is almost always a slight\n*          overestimate of the true error.\n*\n*  BERR    (output) REAL array, dimension (NRHS)\n*          The componentwise relative backward error of each solution\n*          vector X(j) (i.e., the smallest relative change in\n*          any element of A or B that makes X(j) an exact solution).\n*\n*  WORK    (workspace) COMPLEX array, dimension (2*N)\n*\n*  RWORK   (workspace) REAL array, dimension (N)\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value\n*\n*  Internal Parameters\n*  ===================\n*\n*  ITMAX is the maximum number of steps of iterative refinement.\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  ferr, berr, info, x = NumRu::Lapack.csprfs( uplo, ap, afp, ipiv, b, x, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 6 && argc != 6)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
  rblapack_uplo = argv[0];
  rblapack_ap = argv[1];
  rblapack_afp = argv[2];
  rblapack_ipiv = argv[3];
  rblapack_b = argv[4];
  rblapack_x = argv[5];
  if (argc == 6) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  uplo = StringValueCStr(rblapack_uplo)[0];
  if (!NA_IsNArray(rblapack_ipiv))
    rb_raise(rb_eArgError, "ipiv (4th argument) must be NArray");
  if (NA_RANK(rblapack_ipiv) != 1)
    rb_raise(rb_eArgError, "rank of ipiv (4th argument) must be %d", 1);
  n = NA_SHAPE0(rblapack_ipiv);
  if (NA_TYPE(rblapack_ipiv) != NA_LINT)
    rblapack_ipiv = na_change_type(rblapack_ipiv, NA_LINT);
  ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
  if (!NA_IsNArray(rblapack_x))
    rb_raise(rb_eArgError, "x (6th argument) must be NArray");
  if (NA_RANK(rblapack_x) != 2)
    rb_raise(rb_eArgError, "rank of x (6th argument) must be %d", 2);
  ldx = NA_SHAPE0(rblapack_x);
  nrhs = NA_SHAPE1(rblapack_x);
  if (NA_TYPE(rblapack_x) != NA_SCOMPLEX)
    rblapack_x = na_change_type(rblapack_x, NA_SCOMPLEX);
  x = NA_PTR_TYPE(rblapack_x, complex*);
  if (!NA_IsNArray(rblapack_ap))
    rb_raise(rb_eArgError, "ap (2th argument) must be NArray");
  if (NA_RANK(rblapack_ap) != 1)
    rb_raise(rb_eArgError, "rank of ap (2th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_ap) != (n*(n+1)/2))
    rb_raise(rb_eRuntimeError, "shape 0 of ap must be %d", n*(n+1)/2);
  if (NA_TYPE(rblapack_ap) != NA_SCOMPLEX)
    rblapack_ap = na_change_type(rblapack_ap, NA_SCOMPLEX);
  ap = NA_PTR_TYPE(rblapack_ap, complex*);
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (5th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (5th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  if (NA_SHAPE1(rblapack_b) != nrhs)
    rb_raise(rb_eRuntimeError, "shape 1 of b must be the same as shape 1 of x");
  if (NA_TYPE(rblapack_b) != NA_SCOMPLEX)
    rblapack_b = na_change_type(rblapack_b, NA_SCOMPLEX);
  b = NA_PTR_TYPE(rblapack_b, complex*);
  if (!NA_IsNArray(rblapack_afp))
    rb_raise(rb_eArgError, "afp (3th argument) must be NArray");
  if (NA_RANK(rblapack_afp) != 1)
    rb_raise(rb_eArgError, "rank of afp (3th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_afp) != (n*(n+1)/2))
    rb_raise(rb_eRuntimeError, "shape 0 of afp must be %d", n*(n+1)/2);
  if (NA_TYPE(rblapack_afp) != NA_SCOMPLEX)
    rblapack_afp = na_change_type(rblapack_afp, NA_SCOMPLEX);
  afp = NA_PTR_TYPE(rblapack_afp, complex*);
  {
    na_shape_t shape[1];
    shape[0] = nrhs;
    rblapack_ferr = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  ferr = NA_PTR_TYPE(rblapack_ferr, real*);
  {
    na_shape_t shape[1];
    shape[0] = nrhs;
    rblapack_berr = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  berr = NA_PTR_TYPE(rblapack_berr, real*);
  {
    na_shape_t shape[2];
    shape[0] = ldx;
    shape[1] = nrhs;
    rblapack_x_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
  }
  x_out__ = NA_PTR_TYPE(rblapack_x_out__, complex*);
  MEMCPY(x_out__, x, complex, NA_TOTAL(rblapack_x));
  rblapack_x = rblapack_x_out__;
  x = x_out__;
  work = ALLOC_N(complex, (2*n));
  rwork = ALLOC_N(real, (n));

  csprfs_(&uplo, &n, &nrhs, ap, afp, ipiv, b, &ldb, x, &ldx, ferr, berr, work, rwork, &info);

  free(work);
  free(rwork);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(4, rblapack_ferr, rblapack_berr, rblapack_info, rblapack_x);
}

void
init_lapack_csprfs(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "csprfs", rblapack_csprfs, -1);
}