1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
#include "rb_lapack.h"
extern VOID cstein_(integer* n, real* d, real* e, integer* m, real* w, integer* iblock, integer* isplit, complex* z, integer* ldz, real* work, integer* iwork, integer* ifail, integer* info);
static VALUE
rblapack_cstein(int argc, VALUE *argv, VALUE self){
VALUE rblapack_d;
real *d;
VALUE rblapack_e;
real *e;
VALUE rblapack_w;
real *w;
VALUE rblapack_iblock;
integer *iblock;
VALUE rblapack_isplit;
integer *isplit;
VALUE rblapack_z;
complex *z;
VALUE rblapack_ifail;
integer *ifail;
VALUE rblapack_info;
integer info;
real *work;
integer *iwork;
integer n;
integer ldz;
integer m;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n z, ifail, info = NumRu::Lapack.cstein( d, e, w, iblock, isplit, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, IWORK, IFAIL, INFO )\n\n* Purpose\n* =======\n*\n* CSTEIN computes the eigenvectors of a real symmetric tridiagonal\n* matrix T corresponding to specified eigenvalues, using inverse\n* iteration.\n*\n* The maximum number of iterations allowed for each eigenvector is\n* specified by an internal parameter MAXITS (currently set to 5).\n*\n* Although the eigenvectors are real, they are stored in a complex\n* array, which may be passed to CUNMTR or CUPMTR for back\n* transformation to the eigenvectors of a complex Hermitian matrix\n* which was reduced to tridiagonal form.\n*\n*\n\n* Arguments\n* =========\n*\n* N (input) INTEGER\n* The order of the matrix. N >= 0.\n*\n* D (input) REAL array, dimension (N)\n* The n diagonal elements of the tridiagonal matrix T.\n*\n* E (input) REAL array, dimension (N-1)\n* The (n-1) subdiagonal elements of the tridiagonal matrix\n* T, stored in elements 1 to N-1.\n*\n* M (input) INTEGER\n* The number of eigenvectors to be found. 0 <= M <= N.\n*\n* W (input) REAL array, dimension (N)\n* The first M elements of W contain the eigenvalues for\n* which eigenvectors are to be computed. The eigenvalues\n* should be grouped by split-off block and ordered from\n* smallest to largest within the block. ( The output array\n* W from SSTEBZ with ORDER = 'B' is expected here. )\n*\n* IBLOCK (input) INTEGER array, dimension (N)\n* The submatrix indices associated with the corresponding\n* eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to\n* the first submatrix from the top, =2 if W(i) belongs to\n* the second submatrix, etc. ( The output array IBLOCK\n* from SSTEBZ is expected here. )\n*\n* ISPLIT (input) INTEGER array, dimension (N)\n* The splitting points, at which T breaks up into submatrices.\n* The first submatrix consists of rows/columns 1 to\n* ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1\n* through ISPLIT( 2 ), etc.\n* ( The output array ISPLIT from SSTEBZ is expected here. )\n*\n* Z (output) COMPLEX array, dimension (LDZ, M)\n* The computed eigenvectors. The eigenvector associated\n* with the eigenvalue W(i) is stored in the i-th column of\n* Z. Any vector which fails to converge is set to its current\n* iterate after MAXITS iterations.\n* The imaginary parts of the eigenvectors are set to zero.\n*\n* LDZ (input) INTEGER\n* The leading dimension of the array Z. LDZ >= max(1,N).\n*\n* WORK (workspace) REAL array, dimension (5*N)\n*\n* IWORK (workspace) INTEGER array, dimension (N)\n*\n* IFAIL (output) INTEGER array, dimension (M)\n* On normal exit, all elements of IFAIL are zero.\n* If one or more eigenvectors fail to converge after\n* MAXITS iterations, then their indices are stored in\n* array IFAIL.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: if INFO = i, then i eigenvectors failed to converge\n* in MAXITS iterations. Their indices are stored in\n* array IFAIL.\n*\n* Internal Parameters\n* ===================\n*\n* MAXITS INTEGER, default = 5\n* The maximum number of iterations performed.\n*\n* EXTRA INTEGER, default = 2\n* The number of iterations performed after norm growth\n* criterion is satisfied, should be at least 1.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n z, ifail, info = NumRu::Lapack.cstein( d, e, w, iblock, isplit, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 5 && argc != 5)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
rblapack_d = argv[0];
rblapack_e = argv[1];
rblapack_w = argv[2];
rblapack_iblock = argv[3];
rblapack_isplit = argv[4];
if (argc == 5) {
} else if (rblapack_options != Qnil) {
} else {
}
if (!NA_IsNArray(rblapack_d))
rb_raise(rb_eArgError, "d (1th argument) must be NArray");
if (NA_RANK(rblapack_d) != 1)
rb_raise(rb_eArgError, "rank of d (1th argument) must be %d", 1);
n = NA_SHAPE0(rblapack_d);
if (NA_TYPE(rblapack_d) != NA_SFLOAT)
rblapack_d = na_change_type(rblapack_d, NA_SFLOAT);
d = NA_PTR_TYPE(rblapack_d, real*);
if (!NA_IsNArray(rblapack_w))
rb_raise(rb_eArgError, "w (3th argument) must be NArray");
if (NA_RANK(rblapack_w) != 1)
rb_raise(rb_eArgError, "rank of w (3th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_w) != n)
rb_raise(rb_eRuntimeError, "shape 0 of w must be the same as shape 0 of d");
if (NA_TYPE(rblapack_w) != NA_SFLOAT)
rblapack_w = na_change_type(rblapack_w, NA_SFLOAT);
w = NA_PTR_TYPE(rblapack_w, real*);
if (!NA_IsNArray(rblapack_isplit))
rb_raise(rb_eArgError, "isplit (5th argument) must be NArray");
if (NA_RANK(rblapack_isplit) != 1)
rb_raise(rb_eArgError, "rank of isplit (5th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_isplit) != n)
rb_raise(rb_eRuntimeError, "shape 0 of isplit must be the same as shape 0 of d");
if (NA_TYPE(rblapack_isplit) != NA_LINT)
rblapack_isplit = na_change_type(rblapack_isplit, NA_LINT);
isplit = NA_PTR_TYPE(rblapack_isplit, integer*);
if (!NA_IsNArray(rblapack_iblock))
rb_raise(rb_eArgError, "iblock (4th argument) must be NArray");
if (NA_RANK(rblapack_iblock) != 1)
rb_raise(rb_eArgError, "rank of iblock (4th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_iblock) != n)
rb_raise(rb_eRuntimeError, "shape 0 of iblock must be the same as shape 0 of d");
if (NA_TYPE(rblapack_iblock) != NA_LINT)
rblapack_iblock = na_change_type(rblapack_iblock, NA_LINT);
iblock = NA_PTR_TYPE(rblapack_iblock, integer*);
m = n;
if (!NA_IsNArray(rblapack_e))
rb_raise(rb_eArgError, "e (2th argument) must be NArray");
if (NA_RANK(rblapack_e) != 1)
rb_raise(rb_eArgError, "rank of e (2th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_e) != (n-1))
rb_raise(rb_eRuntimeError, "shape 0 of e must be %d", n-1);
if (NA_TYPE(rblapack_e) != NA_SFLOAT)
rblapack_e = na_change_type(rblapack_e, NA_SFLOAT);
e = NA_PTR_TYPE(rblapack_e, real*);
ldz = MAX(1,n);
{
na_shape_t shape[2];
shape[0] = ldz;
shape[1] = m;
rblapack_z = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
z = NA_PTR_TYPE(rblapack_z, complex*);
{
na_shape_t shape[1];
shape[0] = m;
rblapack_ifail = na_make_object(NA_LINT, 1, shape, cNArray);
}
ifail = NA_PTR_TYPE(rblapack_ifail, integer*);
work = ALLOC_N(real, (5*n));
iwork = ALLOC_N(integer, (n));
cstein_(&n, d, e, &m, w, iblock, isplit, z, &ldz, work, iwork, ifail, &info);
free(work);
free(iwork);
rblapack_info = INT2NUM(info);
return rb_ary_new3(3, rblapack_z, rblapack_ifail, rblapack_info);
}
void
init_lapack_cstein(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "cstein", rblapack_cstein, -1);
}
|