1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
|
#include "rb_lapack.h"
extern VOID ctbcon_(char* norm, char* uplo, char* diag, integer* n, integer* kd, complex* ab, integer* ldab, real* rcond, complex* work, real* rwork, integer* info);
static VALUE
rblapack_ctbcon(int argc, VALUE *argv, VALUE self){
VALUE rblapack_norm;
char norm;
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_diag;
char diag;
VALUE rblapack_kd;
integer kd;
VALUE rblapack_ab;
complex *ab;
VALUE rblapack_rcond;
real rcond;
VALUE rblapack_info;
integer info;
complex *work;
real *rwork;
integer ldab;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n rcond, info = NumRu::Lapack.ctbcon( norm, uplo, diag, kd, ab, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CTBCON( NORM, UPLO, DIAG, N, KD, AB, LDAB, RCOND, WORK, RWORK, INFO )\n\n* Purpose\n* =======\n*\n* CTBCON estimates the reciprocal of the condition number of a\n* triangular band matrix A, in either the 1-norm or the infinity-norm.\n*\n* The norm of A is computed and an estimate is obtained for\n* norm(inv(A)), then the reciprocal of the condition number is\n* computed as\n* RCOND = 1 / ( norm(A) * norm(inv(A)) ).\n*\n\n* Arguments\n* =========\n*\n* NORM (input) CHARACTER*1\n* Specifies whether the 1-norm condition number or the\n* infinity-norm condition number is required:\n* = '1' or 'O': 1-norm;\n* = 'I': Infinity-norm.\n*\n* UPLO (input) CHARACTER*1\n* = 'U': A is upper triangular;\n* = 'L': A is lower triangular.\n*\n* DIAG (input) CHARACTER*1\n* = 'N': A is non-unit triangular;\n* = 'U': A is unit triangular.\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* KD (input) INTEGER\n* The number of superdiagonals or subdiagonals of the\n* triangular band matrix A. KD >= 0.\n*\n* AB (input) COMPLEX array, dimension (LDAB,N)\n* The upper or lower triangular band matrix A, stored in the\n* first kd+1 rows of the array. The j-th column of A is stored\n* in the j-th column of the array AB as follows:\n* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;\n* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).\n* If DIAG = 'U', the diagonal elements of A are not referenced\n* and are assumed to be 1.\n*\n* LDAB (input) INTEGER\n* The leading dimension of the array AB. LDAB >= KD+1.\n*\n* RCOND (output) REAL\n* The reciprocal of the condition number of the matrix A,\n* computed as RCOND = 1/(norm(A) * norm(inv(A))).\n*\n* WORK (workspace) COMPLEX array, dimension (2*N)\n*\n* RWORK (workspace) REAL array, dimension (N)\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n rcond, info = NumRu::Lapack.ctbcon( norm, uplo, diag, kd, ab, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 5 && argc != 5)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
rblapack_norm = argv[0];
rblapack_uplo = argv[1];
rblapack_diag = argv[2];
rblapack_kd = argv[3];
rblapack_ab = argv[4];
if (argc == 5) {
} else if (rblapack_options != Qnil) {
} else {
}
norm = StringValueCStr(rblapack_norm)[0];
diag = StringValueCStr(rblapack_diag)[0];
if (!NA_IsNArray(rblapack_ab))
rb_raise(rb_eArgError, "ab (5th argument) must be NArray");
if (NA_RANK(rblapack_ab) != 2)
rb_raise(rb_eArgError, "rank of ab (5th argument) must be %d", 2);
ldab = NA_SHAPE0(rblapack_ab);
n = NA_SHAPE1(rblapack_ab);
if (NA_TYPE(rblapack_ab) != NA_SCOMPLEX)
rblapack_ab = na_change_type(rblapack_ab, NA_SCOMPLEX);
ab = NA_PTR_TYPE(rblapack_ab, complex*);
uplo = StringValueCStr(rblapack_uplo)[0];
kd = NUM2INT(rblapack_kd);
work = ALLOC_N(complex, (2*n));
rwork = ALLOC_N(real, (n));
ctbcon_(&norm, &uplo, &diag, &n, &kd, ab, &ldab, &rcond, work, rwork, &info);
free(work);
free(rwork);
rblapack_rcond = rb_float_new((double)rcond);
rblapack_info = INT2NUM(info);
return rb_ary_new3(2, rblapack_rcond, rblapack_info);
}
void
init_lapack_ctbcon(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "ctbcon", rblapack_ctbcon, -1);
}
|