File: ctpttf.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (79 lines) | stat: -rw-r--r-- 7,637 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#include "rb_lapack.h"

extern VOID ctpttf_(char* transr, char* uplo, integer* n, complex* ap, complex* arf, integer* info);


static VALUE
rblapack_ctpttf(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_transr;
  char transr; 
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_n;
  integer n; 
  VALUE rblapack_ap;
  complex *ap; 
  VALUE rblapack_arf;
  complex *arf; 
  VALUE rblapack_info;
  integer info; 


  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  arf, info = NumRu::Lapack.ctpttf( transr, uplo, n, ap, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE CTPTTF( TRANSR, UPLO, N, AP, ARF, INFO )\n\n*  Purpose\n*  =======\n*\n*  CTPTTF copies a triangular matrix A from standard packed format (TP)\n*  to rectangular full packed format (TF).\n*\n\n*  Arguments\n*  =========\n*\n*  TRANSR   (input) CHARACTER*1\n*          = 'N':  ARF in Normal format is wanted;\n*          = 'C':  ARF in Conjugate-transpose format is wanted.\n*\n*  UPLO    (input) CHARACTER*1\n*          = 'U':  A is upper triangular;\n*          = 'L':  A is lower triangular.\n*\n*  N       (input) INTEGER\n*          The order of the matrix A.  N >= 0.\n*\n*  AP      (input) COMPLEX array, dimension ( N*(N+1)/2 ),\n*          On entry, the upper or lower triangular matrix A, packed\n*          columnwise in a linear array. The j-th column of A is stored\n*          in the array AP as follows:\n*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.\n*\n*  ARF     (output) COMPLEX array, dimension ( N*(N+1)/2 ),\n*          On exit, the upper or lower triangular matrix A stored in\n*          RFP format. For a further discussion see Notes below.\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value\n*\n\n*  Further Details\n*  ===============\n*\n*  We first consider Standard Packed Format when N is even.\n*  We give an example where N = 6.\n*\n*      AP is Upper             AP is Lower\n*\n*   00 01 02 03 04 05       00\n*      11 12 13 14 15       10 11\n*         22 23 24 25       20 21 22\n*            33 34 35       30 31 32 33\n*               44 45       40 41 42 43 44\n*                  55       50 51 52 53 54 55\n*\n*\n*  Let TRANSR = 'N'. RFP holds AP as follows:\n*  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last\n*  three columns of AP upper. The lower triangle A(4:6,0:2) consists of\n*  conjugate-transpose of the first three columns of AP upper.\n*  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first\n*  three columns of AP lower. The upper triangle A(0:2,0:2) consists of\n*  conjugate-transpose of the last three columns of AP lower.\n*  To denote conjugate we place -- above the element. This covers the\n*  case N even and TRANSR = 'N'.\n*\n*         RFP A                   RFP A\n*\n*                                -- -- --\n*        03 04 05                33 43 53\n*                                   -- --\n*        13 14 15                00 44 54\n*                                      --\n*        23 24 25                10 11 55\n*\n*        33 34 35                20 21 22\n*        --\n*        00 44 45                30 31 32\n*        -- --\n*        01 11 55                40 41 42\n*        -- -- --\n*        02 12 22                50 51 52\n*\n*  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-\n*  transpose of RFP A above. One therefore gets:\n*\n*\n*           RFP A                   RFP A\n*\n*     -- -- -- --                -- -- -- -- -- --\n*     03 13 23 33 00 01 02    33 00 10 20 30 40 50\n*     -- -- -- -- --                -- -- -- -- --\n*     04 14 24 34 44 11 12    43 44 11 21 31 41 51\n*     -- -- -- -- -- --                -- -- -- --\n*     05 15 25 35 45 55 22    53 54 55 22 32 42 52\n*\n*\n*  We next  consider Standard Packed Format when N is odd.\n*  We give an example where N = 5.\n*\n*     AP is Upper                 AP is Lower\n*\n*   00 01 02 03 04              00\n*      11 12 13 14              10 11\n*         22 23 24              20 21 22\n*            33 34              30 31 32 33\n*               44              40 41 42 43 44\n*\n*\n*  Let TRANSR = 'N'. RFP holds AP as follows:\n*  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last\n*  three columns of AP upper. The lower triangle A(3:4,0:1) consists of\n*  conjugate-transpose of the first two   columns of AP upper.\n*  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first\n*  three columns of AP lower. The upper triangle A(0:1,1:2) consists of\n*  conjugate-transpose of the last two   columns of AP lower.\n*  To denote conjugate we place -- above the element. This covers the\n*  case N odd  and TRANSR = 'N'.\n*\n*         RFP A                   RFP A\n*\n*                                   -- --\n*        02 03 04                00 33 43\n*                                      --\n*        12 13 14                10 11 44\n*\n*        22 23 24                20 21 22\n*        --\n*        00 33 34                30 31 32\n*        -- --\n*        01 11 44                40 41 42\n*\n*  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-\n*  transpose of RFP A above. One therefore gets:\n*\n*\n*           RFP A                   RFP A\n*\n*     -- -- --                   -- -- -- -- -- --\n*     02 12 22 00 01             00 10 20 30 40 50\n*     -- -- -- --                   -- -- -- -- --\n*     03 13 23 33 11             33 11 21 31 41 51\n*     -- -- -- -- --                   -- -- -- --\n*     04 14 24 34 44             43 44 22 32 42 52\n*\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  arf, info = NumRu::Lapack.ctpttf( transr, uplo, n, ap, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 4 && argc != 4)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
  rblapack_transr = argv[0];
  rblapack_uplo = argv[1];
  rblapack_n = argv[2];
  rblapack_ap = argv[3];
  if (argc == 4) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  transr = StringValueCStr(rblapack_transr)[0];
  n = NUM2INT(rblapack_n);
  uplo = StringValueCStr(rblapack_uplo)[0];
  if (!NA_IsNArray(rblapack_ap))
    rb_raise(rb_eArgError, "ap (4th argument) must be NArray");
  if (NA_RANK(rblapack_ap) != 1)
    rb_raise(rb_eArgError, "rank of ap (4th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_ap) != (( n*(n+1)/2 )))
    rb_raise(rb_eRuntimeError, "shape 0 of ap must be %d", ( n*(n+1)/2 ));
  if (NA_TYPE(rblapack_ap) != NA_SCOMPLEX)
    rblapack_ap = na_change_type(rblapack_ap, NA_SCOMPLEX);
  ap = NA_PTR_TYPE(rblapack_ap, complex*);
  {
    na_shape_t shape[1];
    shape[0] = ( n*(n+1)/2 );
    rblapack_arf = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
  }
  arf = NA_PTR_TYPE(rblapack_arf, complex*);

  ctpttf_(&transr, &uplo, &n, ap, arf, &info);

  rblapack_info = INT2NUM(info);
  return rb_ary_new3(2, rblapack_arf, rblapack_info);
}

void
init_lapack_ctpttf(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "ctpttf", rblapack_ctpttf, -1);
}