1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
#include "rb_lapack.h"
extern VOID ctrsna_(char* job, char* howmny, logical* select, integer* n, complex* t, integer* ldt, complex* vl, integer* ldvl, complex* vr, integer* ldvr, real* s, real* sep, integer* mm, integer* m, complex* work, integer* ldwork, real* rwork, integer* info);
static VALUE
rblapack_ctrsna(int argc, VALUE *argv, VALUE self){
VALUE rblapack_job;
char job;
VALUE rblapack_howmny;
char howmny;
VALUE rblapack_select;
logical *select;
VALUE rblapack_t;
complex *t;
VALUE rblapack_vl;
complex *vl;
VALUE rblapack_vr;
complex *vr;
VALUE rblapack_s;
real *s;
VALUE rblapack_sep;
real *sep;
VALUE rblapack_m;
integer m;
VALUE rblapack_info;
integer info;
complex *work;
real *rwork;
integer n;
integer ldt;
integer ldvl;
integer ldvr;
integer mm;
integer ldwork;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n s, sep, m, info = NumRu::Lapack.ctrsna( job, howmny, select, t, vl, vr, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK, INFO )\n\n* Purpose\n* =======\n*\n* CTRSNA estimates reciprocal condition numbers for specified\n* eigenvalues and/or right eigenvectors of a complex upper triangular\n* matrix T (or of any matrix Q*T*Q**H with Q unitary).\n*\n\n* Arguments\n* =========\n*\n* JOB (input) CHARACTER*1\n* Specifies whether condition numbers are required for\n* eigenvalues (S) or eigenvectors (SEP):\n* = 'E': for eigenvalues only (S);\n* = 'V': for eigenvectors only (SEP);\n* = 'B': for both eigenvalues and eigenvectors (S and SEP).\n*\n* HOWMNY (input) CHARACTER*1\n* = 'A': compute condition numbers for all eigenpairs;\n* = 'S': compute condition numbers for selected eigenpairs\n* specified by the array SELECT.\n*\n* SELECT (input) LOGICAL array, dimension (N)\n* If HOWMNY = 'S', SELECT specifies the eigenpairs for which\n* condition numbers are required. To select condition numbers\n* for the j-th eigenpair, SELECT(j) must be set to .TRUE..\n* If HOWMNY = 'A', SELECT is not referenced.\n*\n* N (input) INTEGER\n* The order of the matrix T. N >= 0.\n*\n* T (input) COMPLEX array, dimension (LDT,N)\n* The upper triangular matrix T.\n*\n* LDT (input) INTEGER\n* The leading dimension of the array T. LDT >= max(1,N).\n*\n* VL (input) COMPLEX array, dimension (LDVL,M)\n* If JOB = 'E' or 'B', VL must contain left eigenvectors of T\n* (or of any Q*T*Q**H with Q unitary), corresponding to the\n* eigenpairs specified by HOWMNY and SELECT. The eigenvectors\n* must be stored in consecutive columns of VL, as returned by\n* CHSEIN or CTREVC.\n* If JOB = 'V', VL is not referenced.\n*\n* LDVL (input) INTEGER\n* The leading dimension of the array VL.\n* LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.\n*\n* VR (input) COMPLEX array, dimension (LDVR,M)\n* If JOB = 'E' or 'B', VR must contain right eigenvectors of T\n* (or of any Q*T*Q**H with Q unitary), corresponding to the\n* eigenpairs specified by HOWMNY and SELECT. The eigenvectors\n* must be stored in consecutive columns of VR, as returned by\n* CHSEIN or CTREVC.\n* If JOB = 'V', VR is not referenced.\n*\n* LDVR (input) INTEGER\n* The leading dimension of the array VR.\n* LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.\n*\n* S (output) REAL array, dimension (MM)\n* If JOB = 'E' or 'B', the reciprocal condition numbers of the\n* selected eigenvalues, stored in consecutive elements of the\n* array. Thus S(j), SEP(j), and the j-th columns of VL and VR\n* all correspond to the same eigenpair (but not in general the\n* j-th eigenpair, unless all eigenpairs are selected).\n* If JOB = 'V', S is not referenced.\n*\n* SEP (output) REAL array, dimension (MM)\n* If JOB = 'V' or 'B', the estimated reciprocal condition\n* numbers of the selected eigenvectors, stored in consecutive\n* elements of the array.\n* If JOB = 'E', SEP is not referenced.\n*\n* MM (input) INTEGER\n* The number of elements in the arrays S (if JOB = 'E' or 'B')\n* and/or SEP (if JOB = 'V' or 'B'). MM >= M.\n*\n* M (output) INTEGER\n* The number of elements of the arrays S and/or SEP actually\n* used to store the estimated condition numbers.\n* If HOWMNY = 'A', M is set to N.\n*\n* WORK (workspace) COMPLEX array, dimension (LDWORK,N+6)\n* If JOB = 'E', WORK is not referenced.\n*\n* LDWORK (input) INTEGER\n* The leading dimension of the array WORK.\n* LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.\n*\n* RWORK (workspace) REAL array, dimension (N)\n* If JOB = 'E', RWORK is not referenced.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n\n* Further Details\n* ===============\n*\n* The reciprocal of the condition number of an eigenvalue lambda is\n* defined as\n*\n* S(lambda) = |v'*u| / (norm(u)*norm(v))\n*\n* where u and v are the right and left eigenvectors of T corresponding\n* to lambda; v' denotes the conjugate transpose of v, and norm(u)\n* denotes the Euclidean norm. These reciprocal condition numbers always\n* lie between zero (very badly conditioned) and one (very well\n* conditioned). If n = 1, S(lambda) is defined to be 1.\n*\n* An approximate error bound for a computed eigenvalue W(i) is given by\n*\n* EPS * norm(T) / S(i)\n*\n* where EPS is the machine precision.\n*\n* The reciprocal of the condition number of the right eigenvector u\n* corresponding to lambda is defined as follows. Suppose\n*\n* T = ( lambda c )\n* ( 0 T22 )\n*\n* Then the reciprocal condition number is\n*\n* SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )\n*\n* where sigma-min denotes the smallest singular value. We approximate\n* the smallest singular value by the reciprocal of an estimate of the\n* one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is\n* defined to be abs(T(1,1)).\n*\n* An approximate error bound for a computed right eigenvector VR(i)\n* is given by\n*\n* EPS * norm(T) / SEP(i)\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n s, sep, m, info = NumRu::Lapack.ctrsna( job, howmny, select, t, vl, vr, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 6 && argc != 6)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
rblapack_job = argv[0];
rblapack_howmny = argv[1];
rblapack_select = argv[2];
rblapack_t = argv[3];
rblapack_vl = argv[4];
rblapack_vr = argv[5];
if (argc == 6) {
} else if (rblapack_options != Qnil) {
} else {
}
job = StringValueCStr(rblapack_job)[0];
if (!NA_IsNArray(rblapack_select))
rb_raise(rb_eArgError, "select (3th argument) must be NArray");
if (NA_RANK(rblapack_select) != 1)
rb_raise(rb_eArgError, "rank of select (3th argument) must be %d", 1);
n = NA_SHAPE0(rblapack_select);
if (NA_TYPE(rblapack_select) != NA_LINT)
rblapack_select = na_change_type(rblapack_select, NA_LINT);
select = NA_PTR_TYPE(rblapack_select, logical*);
if (!NA_IsNArray(rblapack_vl))
rb_raise(rb_eArgError, "vl (5th argument) must be NArray");
if (NA_RANK(rblapack_vl) != 2)
rb_raise(rb_eArgError, "rank of vl (5th argument) must be %d", 2);
ldvl = NA_SHAPE0(rblapack_vl);
m = NA_SHAPE1(rblapack_vl);
if (NA_TYPE(rblapack_vl) != NA_SCOMPLEX)
rblapack_vl = na_change_type(rblapack_vl, NA_SCOMPLEX);
vl = NA_PTR_TYPE(rblapack_vl, complex*);
howmny = StringValueCStr(rblapack_howmny)[0];
if (!NA_IsNArray(rblapack_vr))
rb_raise(rb_eArgError, "vr (6th argument) must be NArray");
if (NA_RANK(rblapack_vr) != 2)
rb_raise(rb_eArgError, "rank of vr (6th argument) must be %d", 2);
ldvr = NA_SHAPE0(rblapack_vr);
if (NA_SHAPE1(rblapack_vr) != m)
rb_raise(rb_eRuntimeError, "shape 1 of vr must be the same as shape 1 of vl");
if (NA_TYPE(rblapack_vr) != NA_SCOMPLEX)
rblapack_vr = na_change_type(rblapack_vr, NA_SCOMPLEX);
vr = NA_PTR_TYPE(rblapack_vr, complex*);
mm = m;
if (!NA_IsNArray(rblapack_t))
rb_raise(rb_eArgError, "t (4th argument) must be NArray");
if (NA_RANK(rblapack_t) != 2)
rb_raise(rb_eArgError, "rank of t (4th argument) must be %d", 2);
ldt = NA_SHAPE0(rblapack_t);
if (NA_SHAPE1(rblapack_t) != n)
rb_raise(rb_eRuntimeError, "shape 1 of t must be the same as shape 0 of select");
if (NA_TYPE(rblapack_t) != NA_SCOMPLEX)
rblapack_t = na_change_type(rblapack_t, NA_SCOMPLEX);
t = NA_PTR_TYPE(rblapack_t, complex*);
ldwork = ((lsame_(&job,"V")) || (lsame_(&job,"B"))) ? n : 1;
{
na_shape_t shape[1];
shape[0] = mm;
rblapack_s = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
s = NA_PTR_TYPE(rblapack_s, real*);
{
na_shape_t shape[1];
shape[0] = mm;
rblapack_sep = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
sep = NA_PTR_TYPE(rblapack_sep, real*);
work = ALLOC_N(complex, (lsame_(&job,"E") ? 0 : ldwork)*(lsame_(&job,"E") ? 0 : n+6));
rwork = ALLOC_N(real, (lsame_(&job,"E") ? 0 : n));
ctrsna_(&job, &howmny, select, &n, t, &ldt, vl, &ldvl, vr, &ldvr, s, sep, &mm, &m, work, &ldwork, rwork, &info);
free(work);
free(rwork);
rblapack_m = INT2NUM(m);
rblapack_info = INT2NUM(info);
return rb_ary_new3(4, rblapack_s, rblapack_sep, rblapack_m, rblapack_info);
}
void
init_lapack_ctrsna(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "ctrsna", rblapack_ctrsna, -1);
}
|