1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
|
#include "rb_lapack.h"
extern VOID ctrsyl_(char* trana, char* tranb, integer* isgn, integer* m, integer* n, complex* a, integer* lda, complex* b, integer* ldb, complex* c, integer* ldc, real* scale, integer* info);
static VALUE
rblapack_ctrsyl(int argc, VALUE *argv, VALUE self){
VALUE rblapack_trana;
char trana;
VALUE rblapack_tranb;
char tranb;
VALUE rblapack_isgn;
integer isgn;
VALUE rblapack_a;
complex *a;
VALUE rblapack_b;
complex *b;
VALUE rblapack_c;
complex *c;
VALUE rblapack_scale;
real scale;
VALUE rblapack_info;
integer info;
VALUE rblapack_c_out__;
complex *c_out__;
integer lda;
integer m;
integer ldb;
integer n;
integer ldc;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n scale, info, c = NumRu::Lapack.ctrsyl( trana, tranb, isgn, a, b, c, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, LDC, SCALE, INFO )\n\n* Purpose\n* =======\n*\n* CTRSYL solves the complex Sylvester matrix equation:\n*\n* op(A)*X + X*op(B) = scale*C or\n* op(A)*X - X*op(B) = scale*C,\n*\n* where op(A) = A or A**H, and A and B are both upper triangular. A is\n* M-by-M and B is N-by-N; the right hand side C and the solution X are\n* M-by-N; and scale is an output scale factor, set <= 1 to avoid\n* overflow in X.\n*\n\n* Arguments\n* =========\n*\n* TRANA (input) CHARACTER*1\n* Specifies the option op(A):\n* = 'N': op(A) = A (No transpose)\n* = 'C': op(A) = A**H (Conjugate transpose)\n*\n* TRANB (input) CHARACTER*1\n* Specifies the option op(B):\n* = 'N': op(B) = B (No transpose)\n* = 'C': op(B) = B**H (Conjugate transpose)\n*\n* ISGN (input) INTEGER\n* Specifies the sign in the equation:\n* = +1: solve op(A)*X + X*op(B) = scale*C\n* = -1: solve op(A)*X - X*op(B) = scale*C\n*\n* M (input) INTEGER\n* The order of the matrix A, and the number of rows in the\n* matrices X and C. M >= 0.\n*\n* N (input) INTEGER\n* The order of the matrix B, and the number of columns in the\n* matrices X and C. N >= 0.\n*\n* A (input) COMPLEX array, dimension (LDA,M)\n* The upper triangular matrix A.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,M).\n*\n* B (input) COMPLEX array, dimension (LDB,N)\n* The upper triangular matrix B.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,N).\n*\n* C (input/output) COMPLEX array, dimension (LDC,N)\n* On entry, the M-by-N right hand side matrix C.\n* On exit, C is overwritten by the solution matrix X.\n*\n* LDC (input) INTEGER\n* The leading dimension of the array C. LDC >= max(1,M)\n*\n* SCALE (output) REAL\n* The scale factor, scale, set <= 1 to avoid overflow in X.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* = 1: A and B have common or very close eigenvalues; perturbed\n* values were used to solve the equation (but the matrices\n* A and B are unchanged).\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n scale, info, c = NumRu::Lapack.ctrsyl( trana, tranb, isgn, a, b, c, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 6 && argc != 6)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
rblapack_trana = argv[0];
rblapack_tranb = argv[1];
rblapack_isgn = argv[2];
rblapack_a = argv[3];
rblapack_b = argv[4];
rblapack_c = argv[5];
if (argc == 6) {
} else if (rblapack_options != Qnil) {
} else {
}
trana = StringValueCStr(rblapack_trana)[0];
isgn = NUM2INT(rblapack_isgn);
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (5th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (5th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
n = NA_SHAPE1(rblapack_b);
if (NA_TYPE(rblapack_b) != NA_SCOMPLEX)
rblapack_b = na_change_type(rblapack_b, NA_SCOMPLEX);
b = NA_PTR_TYPE(rblapack_b, complex*);
tranb = StringValueCStr(rblapack_tranb)[0];
if (!NA_IsNArray(rblapack_c))
rb_raise(rb_eArgError, "c (6th argument) must be NArray");
if (NA_RANK(rblapack_c) != 2)
rb_raise(rb_eArgError, "rank of c (6th argument) must be %d", 2);
ldc = NA_SHAPE0(rblapack_c);
if (NA_SHAPE1(rblapack_c) != n)
rb_raise(rb_eRuntimeError, "shape 1 of c must be the same as shape 1 of b");
if (NA_TYPE(rblapack_c) != NA_SCOMPLEX)
rblapack_c = na_change_type(rblapack_c, NA_SCOMPLEX);
c = NA_PTR_TYPE(rblapack_c, complex*);
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (4th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (4th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
m = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_SCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_SCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, complex*);
{
na_shape_t shape[2];
shape[0] = ldc;
shape[1] = n;
rblapack_c_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
c_out__ = NA_PTR_TYPE(rblapack_c_out__, complex*);
MEMCPY(c_out__, c, complex, NA_TOTAL(rblapack_c));
rblapack_c = rblapack_c_out__;
c = c_out__;
ctrsyl_(&trana, &tranb, &isgn, &m, &n, a, &lda, b, &ldb, c, &ldc, &scale, &info);
rblapack_scale = rb_float_new((double)scale);
rblapack_info = INT2NUM(info);
return rb_ary_new3(3, rblapack_scale, rblapack_info, rblapack_c);
}
void
init_lapack_ctrsyl(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "ctrsyl", rblapack_ctrsyl, -1);
}
|