1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
#include "rb_lapack.h"
extern VOID cuncsd_(char* jobu1, char* jobu2, char* jobv1t, char* jobv2t, char* trans, char* signs, integer* m, integer* p, integer* q, complex* x11, integer* ldx11, complex* x12, integer* ldx12, complex* x21, integer* ldx21, complex* x22, integer* ldx22, real* theta, complex* u1, integer* ldu1, complex* u2, integer* ldu2, complex* v1t, integer* ldv1t, complex* v2t, integer* ldv2t, complex* work, integer* lwork, real* rwork, integer* lrwork, integer* iwork, integer* info);
static VALUE
rblapack_cuncsd(int argc, VALUE *argv, VALUE self){
VALUE rblapack_jobu1;
char jobu1;
VALUE rblapack_jobu2;
char jobu2;
VALUE rblapack_jobv1t;
char jobv1t;
VALUE rblapack_jobv2t;
char jobv2t;
VALUE rblapack_trans;
char trans;
VALUE rblapack_signs;
char signs;
VALUE rblapack_m;
integer m;
VALUE rblapack_x11;
complex *x11;
VALUE rblapack_x12;
complex *x12;
VALUE rblapack_x21;
complex *x21;
VALUE rblapack_x22;
complex *x22;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_lrwork;
integer lrwork;
VALUE rblapack_theta;
real *theta;
VALUE rblapack_u1;
complex *u1;
VALUE rblapack_u2;
complex *u2;
VALUE rblapack_v1t;
complex *v1t;
VALUE rblapack_v2t;
complex *v2t;
VALUE rblapack_info;
integer info;
complex *work;
real *rwork;
integer *iwork;
integer p;
integer q;
integer ldv2t;
integer ldv1t;
integer ldu1;
integer ldu2;
integer ldx11;
integer ldx12;
integer ldx21;
integer ldx22;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n theta, u1, u2, v1t, v2t, info = NumRu::Lapack.cuncsd( jobu1, jobu2, jobv1t, jobv2t, trans, signs, m, x11, x12, x21, x22, lwork, lrwork, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n RECURSIVE SUBROUTINE CUNCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, X21, LDX21, X22, LDX22, THETA, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, WORK, LWORK, RWORK, LRWORK, IWORK, INFO )\n\n* Purpose\n* =======\n*\n* CUNCSD computes the CS decomposition of an M-by-M partitioned\n* unitary matrix X:\n*\n* [ I 0 0 | 0 0 0 ]\n* [ 0 C 0 | 0 -S 0 ]\n* [ X11 | X12 ] [ U1 | ] [ 0 0 0 | 0 0 -I ] [ V1 | ]**H\n* X = [-----------] = [---------] [---------------------] [---------] .\n* [ X21 | X22 ] [ | U2 ] [ 0 0 0 | I 0 0 ] [ | V2 ]\n* [ 0 S 0 | 0 C 0 ]\n* [ 0 0 I | 0 0 0 ]\n*\n* X11 is P-by-Q. The unitary matrices U1, U2, V1, and V2 are P-by-P,\n* (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are\n* R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in\n* which R = MIN(P,M-P,Q,M-Q).\n*\n\n* Arguments\n* =========\n*\n* JOBU1 (input) CHARACTER\n* = 'Y': U1 is computed;\n* otherwise: U1 is not computed.\n*\n* JOBU2 (input) CHARACTER\n* = 'Y': U2 is computed;\n* otherwise: U2 is not computed.\n*\n* JOBV1T (input) CHARACTER\n* = 'Y': V1T is computed;\n* otherwise: V1T is not computed.\n*\n* JOBV2T (input) CHARACTER\n* = 'Y': V2T is computed;\n* otherwise: V2T is not computed.\n*\n* TRANS (input) CHARACTER\n* = 'T': X, U1, U2, V1T, and V2T are stored in row-major\n* order;\n* otherwise: X, U1, U2, V1T, and V2T are stored in column-\n* major order.\n*\n* SIGNS (input) CHARACTER\n* = 'O': The lower-left block is made nonpositive (the\n* \"other\" convention);\n* otherwise: The upper-right block is made nonpositive (the\n* \"default\" convention).\n*\n* M (input) INTEGER\n* The number of rows and columns in X.\n*\n* P (input) INTEGER\n* The number of rows in X11 and X12. 0 <= P <= M.\n*\n* Q (input) INTEGER\n* The number of columns in X11 and X21. 0 <= Q <= M.\n*\n* X (input/workspace) COMPLEX array, dimension (LDX,M)\n* On entry, the unitary matrix whose CSD is desired.\n*\n* LDX (input) INTEGER\n* The leading dimension of X. LDX >= MAX(1,M).\n*\n* THETA (output) REAL array, dimension (R), in which R =\n* MIN(P,M-P,Q,M-Q).\n* C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and\n* S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).\n*\n* U1 (output) COMPLEX array, dimension (P)\n* If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.\n*\n* LDU1 (input) INTEGER\n* The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=\n* MAX(1,P).\n*\n* U2 (output) COMPLEX array, dimension (M-P)\n* If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary\n* matrix U2.\n*\n* LDU2 (input) INTEGER\n* The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=\n* MAX(1,M-P).\n*\n* V1T (output) COMPLEX array, dimension (Q)\n* If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary\n* matrix V1**H.\n*\n* LDV1T (input) INTEGER\n* The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=\n* MAX(1,Q).\n*\n* V2T (output) COMPLEX array, dimension (M-Q)\n* If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) unitary\n* matrix V2**H.\n*\n* LDV2T (input) INTEGER\n* The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >=\n* MAX(1,M-Q).\n*\n* WORK (workspace) COMPLEX array, dimension (MAX(1,LWORK))\n* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK.\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal size of the WORK array, returns\n* this value as the first entry of the work array, and no error\n* message related to LWORK is issued by XERBLA.\n*\n* RWORK (workspace) REAL array, dimension MAX(1,LRWORK)\n* On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.\n* If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1),\n* ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),\n* define the matrix in intermediate bidiagonal-block form\n* remaining after nonconvergence. INFO specifies the number\n* of nonzero PHI's.\n*\n* LRWORK (input) INTEGER\n* The dimension of the array RWORK.\n*\n* If LRWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal size of the RWORK array, returns\n* this value as the first entry of the work array, and no error\n* message related to LRWORK is issued by XERBLA.\n*\n* IWORK (workspace) INTEGER array, dimension (M-Q)\n*\n* INFO (output) INTEGER\n* = 0: successful exit.\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n* > 0: CBBCSD did not converge. See the description of RWORK\n* above for details.\n*\n* Reference\n* =========\n*\n* [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.\n* Algorithms, 50(1):33-65, 2009.\n*\n\n* ===================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n theta, u1, u2, v1t, v2t, info = NumRu::Lapack.cuncsd( jobu1, jobu2, jobv1t, jobv2t, trans, signs, m, x11, x12, x21, x22, lwork, lrwork, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 13 && argc != 13)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 13)", argc);
rblapack_jobu1 = argv[0];
rblapack_jobu2 = argv[1];
rblapack_jobv1t = argv[2];
rblapack_jobv2t = argv[3];
rblapack_trans = argv[4];
rblapack_signs = argv[5];
rblapack_m = argv[6];
rblapack_x11 = argv[7];
rblapack_x12 = argv[8];
rblapack_x21 = argv[9];
rblapack_x22 = argv[10];
rblapack_lwork = argv[11];
rblapack_lrwork = argv[12];
if (argc == 13) {
} else if (rblapack_options != Qnil) {
} else {
}
jobu1 = StringValueCStr(rblapack_jobu1)[0];
jobv1t = StringValueCStr(rblapack_jobv1t)[0];
trans = StringValueCStr(rblapack_trans)[0];
m = NUM2INT(rblapack_m);
if (!NA_IsNArray(rblapack_x21))
rb_raise(rb_eArgError, "x21 (10th argument) must be NArray");
if (NA_RANK(rblapack_x21) != 2)
rb_raise(rb_eArgError, "rank of x21 (10th argument) must be %d", 2);
p = NA_SHAPE0(rblapack_x21);
q = NA_SHAPE1(rblapack_x21);
if (NA_TYPE(rblapack_x21) != NA_SCOMPLEX)
rblapack_x21 = na_change_type(rblapack_x21, NA_SCOMPLEX);
x21 = NA_PTR_TYPE(rblapack_x21, complex*);
lwork = NUM2INT(rblapack_lwork);
jobu2 = StringValueCStr(rblapack_jobu2)[0];
signs = StringValueCStr(rblapack_signs)[0];
lrwork = NUM2INT(rblapack_lrwork);
jobv2t = StringValueCStr(rblapack_jobv2t)[0];
if (!NA_IsNArray(rblapack_x11))
rb_raise(rb_eArgError, "x11 (8th argument) must be NArray");
if (NA_RANK(rblapack_x11) != 2)
rb_raise(rb_eArgError, "rank of x11 (8th argument) must be %d", 2);
if (NA_SHAPE0(rblapack_x11) != p)
rb_raise(rb_eRuntimeError, "shape 0 of x11 must be the same as shape 0 of x21");
if (NA_SHAPE1(rblapack_x11) != q)
rb_raise(rb_eRuntimeError, "shape 1 of x11 must be the same as shape 1 of x21");
if (NA_TYPE(rblapack_x11) != NA_SCOMPLEX)
rblapack_x11 = na_change_type(rblapack_x11, NA_SCOMPLEX);
x11 = NA_PTR_TYPE(rblapack_x11, complex*);
if (!NA_IsNArray(rblapack_x22))
rb_raise(rb_eArgError, "x22 (11th argument) must be NArray");
if (NA_RANK(rblapack_x22) != 2)
rb_raise(rb_eArgError, "rank of x22 (11th argument) must be %d", 2);
if (NA_SHAPE0(rblapack_x22) != p)
rb_raise(rb_eRuntimeError, "shape 0 of x22 must be the same as shape 0 of x21");
if (NA_SHAPE1(rblapack_x22) != (m-q))
rb_raise(rb_eRuntimeError, "shape 1 of x22 must be %d", m-q);
if (NA_TYPE(rblapack_x22) != NA_SCOMPLEX)
rblapack_x22 = na_change_type(rblapack_x22, NA_SCOMPLEX);
x22 = NA_PTR_TYPE(rblapack_x22, complex*);
ldv1t = lsame_(&jobv1t,"Y") ? MAX(1,q) : 0;
if (!NA_IsNArray(rblapack_x12))
rb_raise(rb_eArgError, "x12 (9th argument) must be NArray");
if (NA_RANK(rblapack_x12) != 2)
rb_raise(rb_eArgError, "rank of x12 (9th argument) must be %d", 2);
if (NA_SHAPE0(rblapack_x12) != p)
rb_raise(rb_eRuntimeError, "shape 0 of x12 must be the same as shape 0 of x21");
if (NA_SHAPE1(rblapack_x12) != (m-q))
rb_raise(rb_eRuntimeError, "shape 1 of x12 must be %d", m-q);
if (NA_TYPE(rblapack_x12) != NA_SCOMPLEX)
rblapack_x12 = na_change_type(rblapack_x12, NA_SCOMPLEX);
x12 = NA_PTR_TYPE(rblapack_x12, complex*);
ldu1 = lsame_(&jobu1,"Y") ? MAX(1,p) : 0;
ldx11 = p;
ldx21 = p;
ldv2t = lsame_(&jobv2t,"Y") ? MAX(1,m-q) : 0;
ldx12 = p;
ldu2 = lsame_(&jobu2,"Y") ? MAX(1,m-p) : 0;
ldx22 = p;
{
na_shape_t shape[1];
shape[0] = MIN(MIN(MIN(p,m-p),q),m-q);
rblapack_theta = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
theta = NA_PTR_TYPE(rblapack_theta, real*);
{
na_shape_t shape[1];
shape[0] = p;
rblapack_u1 = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
}
u1 = NA_PTR_TYPE(rblapack_u1, complex*);
{
na_shape_t shape[1];
shape[0] = m-p;
rblapack_u2 = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
}
u2 = NA_PTR_TYPE(rblapack_u2, complex*);
{
na_shape_t shape[1];
shape[0] = q;
rblapack_v1t = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
}
v1t = NA_PTR_TYPE(rblapack_v1t, complex*);
{
na_shape_t shape[1];
shape[0] = m-q;
rblapack_v2t = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
}
v2t = NA_PTR_TYPE(rblapack_v2t, complex*);
work = ALLOC_N(complex, (MAX(1,lwork)));
rwork = ALLOC_N(real, (MAX(1,lrwork)));
iwork = ALLOC_N(integer, (m-q));
cuncsd_(&jobu1, &jobu2, &jobv1t, &jobv2t, &trans, &signs, &m, &p, &q, x11, &ldx11, x12, &ldx12, x21, &ldx21, x22, &ldx22, theta, u1, &ldu1, u2, &ldu2, v1t, &ldv1t, v2t, &ldv2t, work, &lwork, rwork, &lrwork, iwork, &info);
free(work);
free(rwork);
free(iwork);
rblapack_info = INT2NUM(info);
return rb_ary_new3(6, rblapack_theta, rblapack_u1, rblapack_u2, rblapack_v1t, rblapack_v2t, rblapack_info);
}
void
init_lapack_cuncsd(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "cuncsd", rblapack_cuncsd, -1);
}
|