File: cungr2.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (90 lines) | stat: -rw-r--r-- 4,283 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#include "rb_lapack.h"

extern VOID cungr2_(integer* m, integer* n, integer* k, complex* a, integer* lda, complex* tau, complex* work, integer* info);


static VALUE
rblapack_cungr2(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_a;
  complex *a; 
  VALUE rblapack_tau;
  complex *tau; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_a_out__;
  complex *a_out__;
  complex *work;

  integer lda;
  integer n;
  integer k;
  integer m;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, a = NumRu::Lapack.cungr2( a, tau, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE CUNGR2( M, N, K, A, LDA, TAU, WORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  CUNGR2 generates an m by n complex matrix Q with orthonormal rows,\n*  which is defined as the last m rows of a product of k elementary\n*  reflectors of order n\n*\n*        Q  =  H(1)' H(2)' . . . H(k)'\n*\n*  as returned by CGERQF.\n*\n\n*  Arguments\n*  =========\n*\n*  M       (input) INTEGER\n*          The number of rows of the matrix Q. M >= 0.\n*\n*  N       (input) INTEGER\n*          The number of columns of the matrix Q. N >= M.\n*\n*  K       (input) INTEGER\n*          The number of elementary reflectors whose product defines the\n*          matrix Q. M >= K >= 0.\n*\n*  A       (input/output) COMPLEX array, dimension (LDA,N)\n*          On entry, the (m-k+i)-th row must contain the vector which\n*          defines the elementary reflector H(i), for i = 1,2,...,k, as\n*          returned by CGERQF in the last k rows of its array argument\n*          A.\n*          On exit, the m-by-n matrix Q.\n*\n*  LDA     (input) INTEGER\n*          The first dimension of the array A. LDA >= max(1,M).\n*\n*  TAU     (input) COMPLEX array, dimension (K)\n*          TAU(i) must contain the scalar factor of the elementary\n*          reflector H(i), as returned by CGERQF.\n*\n*  WORK    (workspace) COMPLEX array, dimension (M)\n*\n*  INFO    (output) INTEGER\n*          = 0: successful exit\n*          < 0: if INFO = -i, the i-th argument has an illegal value\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, a = NumRu::Lapack.cungr2( a, tau, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 2 && argc != 2)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 2)", argc);
  rblapack_a = argv[0];
  rblapack_tau = argv[1];
  if (argc == 2) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (1th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (1th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  n = NA_SHAPE1(rblapack_a);
  if (NA_TYPE(rblapack_a) != NA_SCOMPLEX)
    rblapack_a = na_change_type(rblapack_a, NA_SCOMPLEX);
  a = NA_PTR_TYPE(rblapack_a, complex*);
  m = lda;
  if (!NA_IsNArray(rblapack_tau))
    rb_raise(rb_eArgError, "tau (2th argument) must be NArray");
  if (NA_RANK(rblapack_tau) != 1)
    rb_raise(rb_eArgError, "rank of tau (2th argument) must be %d", 1);
  k = NA_SHAPE0(rblapack_tau);
  if (NA_TYPE(rblapack_tau) != NA_SCOMPLEX)
    rblapack_tau = na_change_type(rblapack_tau, NA_SCOMPLEX);
  tau = NA_PTR_TYPE(rblapack_tau, complex*);
  {
    na_shape_t shape[2];
    shape[0] = lda;
    shape[1] = n;
    rblapack_a_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
  }
  a_out__ = NA_PTR_TYPE(rblapack_a_out__, complex*);
  MEMCPY(a_out__, a, complex, NA_TOTAL(rblapack_a));
  rblapack_a = rblapack_a_out__;
  a = a_out__;
  work = ALLOC_N(complex, (m));

  cungr2_(&m, &n, &k, a, &lda, tau, work, &info);

  free(work);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(2, rblapack_info, rblapack_a);
}

void
init_lapack_cungr2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "cungr2", rblapack_cungr2, -1);
}