1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
#include "rb_lapack.h"
extern VOID cunm2l_(char* side, char* trans, integer* m, integer* n, integer* k, complex* a, integer* lda, complex* tau, complex* c, integer* ldc, complex* work, integer* info);
static VALUE
rblapack_cunm2l(int argc, VALUE *argv, VALUE self){
VALUE rblapack_side;
char side;
VALUE rblapack_trans;
char trans;
VALUE rblapack_m;
integer m;
VALUE rblapack_a;
complex *a;
VALUE rblapack_tau;
complex *tau;
VALUE rblapack_c;
complex *c;
VALUE rblapack_info;
integer info;
VALUE rblapack_c_out__;
complex *c_out__;
complex *work;
integer lda;
integer k;
integer ldc;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n info, c = NumRu::Lapack.cunm2l( side, trans, m, a, tau, c, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CUNM2L( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO )\n\n* Purpose\n* =======\n*\n* CUNM2L overwrites the general complex m-by-n matrix C with\n*\n* Q * C if SIDE = 'L' and TRANS = 'N', or\n*\n* Q'* C if SIDE = 'L' and TRANS = 'C', or\n*\n* C * Q if SIDE = 'R' and TRANS = 'N', or\n*\n* C * Q' if SIDE = 'R' and TRANS = 'C',\n*\n* where Q is a complex unitary matrix defined as the product of k\n* elementary reflectors\n*\n* Q = H(k) . . . H(2) H(1)\n*\n* as returned by CGEQLF. Q is of order m if SIDE = 'L' and of order n\n* if SIDE = 'R'.\n*\n\n* Arguments\n* =========\n*\n* SIDE (input) CHARACTER*1\n* = 'L': apply Q or Q' from the Left\n* = 'R': apply Q or Q' from the Right\n*\n* TRANS (input) CHARACTER*1\n* = 'N': apply Q (No transpose)\n* = 'C': apply Q' (Conjugate transpose)\n*\n* M (input) INTEGER\n* The number of rows of the matrix C. M >= 0.\n*\n* N (input) INTEGER\n* The number of columns of the matrix C. N >= 0.\n*\n* K (input) INTEGER\n* The number of elementary reflectors whose product defines\n* the matrix Q.\n* If SIDE = 'L', M >= K >= 0;\n* if SIDE = 'R', N >= K >= 0.\n*\n* A (input) COMPLEX array, dimension (LDA,K)\n* The i-th column must contain the vector which defines the\n* elementary reflector H(i), for i = 1,2,...,k, as returned by\n* CGEQLF in the last k columns of its array argument A.\n* A is modified by the routine but restored on exit.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A.\n* If SIDE = 'L', LDA >= max(1,M);\n* if SIDE = 'R', LDA >= max(1,N).\n*\n* TAU (input) COMPLEX array, dimension (K)\n* TAU(i) must contain the scalar factor of the elementary\n* reflector H(i), as returned by CGEQLF.\n*\n* C (input/output) COMPLEX array, dimension (LDC,N)\n* On entry, the m-by-n matrix C.\n* On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.\n*\n* LDC (input) INTEGER\n* The leading dimension of the array C. LDC >= max(1,M).\n*\n* WORK (workspace) COMPLEX array, dimension\n* (N) if SIDE = 'L',\n* (M) if SIDE = 'R'\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n info, c = NumRu::Lapack.cunm2l( side, trans, m, a, tau, c, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 6 && argc != 6)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
rblapack_side = argv[0];
rblapack_trans = argv[1];
rblapack_m = argv[2];
rblapack_a = argv[3];
rblapack_tau = argv[4];
rblapack_c = argv[5];
if (argc == 6) {
} else if (rblapack_options != Qnil) {
} else {
}
side = StringValueCStr(rblapack_side)[0];
m = NUM2INT(rblapack_m);
if (!NA_IsNArray(rblapack_tau))
rb_raise(rb_eArgError, "tau (5th argument) must be NArray");
if (NA_RANK(rblapack_tau) != 1)
rb_raise(rb_eArgError, "rank of tau (5th argument) must be %d", 1);
k = NA_SHAPE0(rblapack_tau);
if (NA_TYPE(rblapack_tau) != NA_SCOMPLEX)
rblapack_tau = na_change_type(rblapack_tau, NA_SCOMPLEX);
tau = NA_PTR_TYPE(rblapack_tau, complex*);
trans = StringValueCStr(rblapack_trans)[0];
if (!NA_IsNArray(rblapack_c))
rb_raise(rb_eArgError, "c (6th argument) must be NArray");
if (NA_RANK(rblapack_c) != 2)
rb_raise(rb_eArgError, "rank of c (6th argument) must be %d", 2);
ldc = NA_SHAPE0(rblapack_c);
n = NA_SHAPE1(rblapack_c);
if (NA_TYPE(rblapack_c) != NA_SCOMPLEX)
rblapack_c = na_change_type(rblapack_c, NA_SCOMPLEX);
c = NA_PTR_TYPE(rblapack_c, complex*);
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (4th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (4th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
if (NA_SHAPE1(rblapack_a) != k)
rb_raise(rb_eRuntimeError, "shape 1 of a must be the same as shape 0 of tau");
if (NA_TYPE(rblapack_a) != NA_SCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_SCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, complex*);
{
na_shape_t shape[2];
shape[0] = ldc;
shape[1] = n;
rblapack_c_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
c_out__ = NA_PTR_TYPE(rblapack_c_out__, complex*);
MEMCPY(c_out__, c, complex, NA_TOTAL(rblapack_c));
rblapack_c = rblapack_c_out__;
c = c_out__;
work = ALLOC_N(complex, (lsame_(&side,"L") ? n : lsame_(&side,"R") ? m : 0));
cunm2l_(&side, &trans, &m, &n, &k, a, &lda, tau, c, &ldc, work, &info);
free(work);
rblapack_info = INT2NUM(info);
return rb_ary_new3(2, rblapack_info, rblapack_c);
}
void
init_lapack_cunm2l(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "cunm2l", rblapack_cunm2l, -1);
}
|