1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
|
#include "rb_lapack.h"
extern VOID dgbcon_(char* norm, integer* n, integer* kl, integer* ku, doublereal* ab, integer* ldab, integer* ipiv, doublereal* anorm, doublereal* rcond, doublereal* work, integer* iwork, integer* info);
static VALUE
rblapack_dgbcon(int argc, VALUE *argv, VALUE self){
VALUE rblapack_norm;
char norm;
VALUE rblapack_kl;
integer kl;
VALUE rblapack_ku;
integer ku;
VALUE rblapack_ab;
doublereal *ab;
VALUE rblapack_ipiv;
integer *ipiv;
VALUE rblapack_anorm;
doublereal anorm;
VALUE rblapack_rcond;
doublereal rcond;
VALUE rblapack_info;
integer info;
doublereal *work;
integer *iwork;
integer ldab;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n rcond, info = NumRu::Lapack.dgbcon( norm, kl, ku, ab, ipiv, anorm, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DGBCON( NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND, WORK, IWORK, INFO )\n\n* Purpose\n* =======\n*\n* DGBCON estimates the reciprocal of the condition number of a real\n* general band matrix A, in either the 1-norm or the infinity-norm,\n* using the LU factorization computed by DGBTRF.\n*\n* An estimate is obtained for norm(inv(A)), and the reciprocal of the\n* condition number is computed as\n* RCOND = 1 / ( norm(A) * norm(inv(A)) ).\n*\n\n* Arguments\n* =========\n*\n* NORM (input) CHARACTER*1\n* Specifies whether the 1-norm condition number or the\n* infinity-norm condition number is required:\n* = '1' or 'O': 1-norm;\n* = 'I': Infinity-norm.\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* KL (input) INTEGER\n* The number of subdiagonals within the band of A. KL >= 0.\n*\n* KU (input) INTEGER\n* The number of superdiagonals within the band of A. KU >= 0.\n*\n* AB (input) DOUBLE PRECISION array, dimension (LDAB,N)\n* Details of the LU factorization of the band matrix A, as\n* computed by DGBTRF. U is stored as an upper triangular band\n* matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and\n* the multipliers used during the factorization are stored in\n* rows KL+KU+2 to 2*KL+KU+1.\n*\n* LDAB (input) INTEGER\n* The leading dimension of the array AB. LDAB >= 2*KL+KU+1.\n*\n* IPIV (input) INTEGER array, dimension (N)\n* The pivot indices; for 1 <= i <= N, row i of the matrix was\n* interchanged with row IPIV(i).\n*\n* ANORM (input) DOUBLE PRECISION\n* If NORM = '1' or 'O', the 1-norm of the original matrix A.\n* If NORM = 'I', the infinity-norm of the original matrix A.\n*\n* RCOND (output) DOUBLE PRECISION\n* The reciprocal of the condition number of the matrix A,\n* computed as RCOND = 1/(norm(A) * norm(inv(A))).\n*\n* WORK (workspace) DOUBLE PRECISION array, dimension (3*N)\n*\n* IWORK (workspace) INTEGER array, dimension (N)\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n rcond, info = NumRu::Lapack.dgbcon( norm, kl, ku, ab, ipiv, anorm, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 6 && argc != 6)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
rblapack_norm = argv[0];
rblapack_kl = argv[1];
rblapack_ku = argv[2];
rblapack_ab = argv[3];
rblapack_ipiv = argv[4];
rblapack_anorm = argv[5];
if (argc == 6) {
} else if (rblapack_options != Qnil) {
} else {
}
norm = StringValueCStr(rblapack_norm)[0];
ku = NUM2INT(rblapack_ku);
if (!NA_IsNArray(rblapack_ipiv))
rb_raise(rb_eArgError, "ipiv (5th argument) must be NArray");
if (NA_RANK(rblapack_ipiv) != 1)
rb_raise(rb_eArgError, "rank of ipiv (5th argument) must be %d", 1);
n = NA_SHAPE0(rblapack_ipiv);
if (NA_TYPE(rblapack_ipiv) != NA_LINT)
rblapack_ipiv = na_change_type(rblapack_ipiv, NA_LINT);
ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
kl = NUM2INT(rblapack_kl);
anorm = NUM2DBL(rblapack_anorm);
if (!NA_IsNArray(rblapack_ab))
rb_raise(rb_eArgError, "ab (4th argument) must be NArray");
if (NA_RANK(rblapack_ab) != 2)
rb_raise(rb_eArgError, "rank of ab (4th argument) must be %d", 2);
ldab = NA_SHAPE0(rblapack_ab);
if (NA_SHAPE1(rblapack_ab) != n)
rb_raise(rb_eRuntimeError, "shape 1 of ab must be the same as shape 0 of ipiv");
if (NA_TYPE(rblapack_ab) != NA_DFLOAT)
rblapack_ab = na_change_type(rblapack_ab, NA_DFLOAT);
ab = NA_PTR_TYPE(rblapack_ab, doublereal*);
work = ALLOC_N(doublereal, (3*n));
iwork = ALLOC_N(integer, (n));
dgbcon_(&norm, &n, &kl, &ku, ab, &ldab, ipiv, &anorm, &rcond, work, iwork, &info);
free(work);
free(iwork);
rblapack_rcond = rb_float_new((double)rcond);
rblapack_info = INT2NUM(info);
return rb_ary_new3(2, rblapack_rcond, rblapack_info);
}
void
init_lapack_dgbcon(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dgbcon", rblapack_dgbcon, -1);
}
|