1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
#include "rb_lapack.h"
extern VOID dgbrfs_(char* trans, integer* n, integer* kl, integer* ku, integer* nrhs, doublereal* ab, integer* ldab, doublereal* afb, integer* ldafb, integer* ipiv, doublereal* b, integer* ldb, doublereal* x, integer* ldx, doublereal* ferr, doublereal* berr, doublereal* work, integer* iwork, integer* info);
static VALUE
rblapack_dgbrfs(int argc, VALUE *argv, VALUE self){
VALUE rblapack_trans;
char trans;
VALUE rblapack_kl;
integer kl;
VALUE rblapack_ku;
integer ku;
VALUE rblapack_ab;
doublereal *ab;
VALUE rblapack_afb;
doublereal *afb;
VALUE rblapack_ipiv;
integer *ipiv;
VALUE rblapack_b;
doublereal *b;
VALUE rblapack_x;
doublereal *x;
VALUE rblapack_ferr;
doublereal *ferr;
VALUE rblapack_berr;
doublereal *berr;
VALUE rblapack_info;
integer info;
VALUE rblapack_x_out__;
doublereal *x_out__;
doublereal *work;
integer *iwork;
integer ldab;
integer n;
integer ldafb;
integer ldb;
integer nrhs;
integer ldx;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n ferr, berr, info, x = NumRu::Lapack.dgbrfs( trans, kl, ku, ab, afb, ipiv, b, x, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )\n\n* Purpose\n* =======\n*\n* DGBRFS improves the computed solution to a system of linear\n* equations when the coefficient matrix is banded, and provides\n* error bounds and backward error estimates for the solution.\n*\n\n* Arguments\n* =========\n*\n* TRANS (input) CHARACTER*1\n* Specifies the form of the system of equations:\n* = 'N': A * X = B (No transpose)\n* = 'T': A**T * X = B (Transpose)\n* = 'C': A**H * X = B (Conjugate transpose = Transpose)\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* KL (input) INTEGER\n* The number of subdiagonals within the band of A. KL >= 0.\n*\n* KU (input) INTEGER\n* The number of superdiagonals within the band of A. KU >= 0.\n*\n* NRHS (input) INTEGER\n* The number of right hand sides, i.e., the number of columns\n* of the matrices B and X. NRHS >= 0.\n*\n* AB (input) DOUBLE PRECISION array, dimension (LDAB,N)\n* The original band matrix A, stored in rows 1 to KL+KU+1.\n* The j-th column of A is stored in the j-th column of the\n* array AB as follows:\n* AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).\n*\n* LDAB (input) INTEGER\n* The leading dimension of the array AB. LDAB >= KL+KU+1.\n*\n* AFB (input) DOUBLE PRECISION array, dimension (LDAFB,N)\n* Details of the LU factorization of the band matrix A, as\n* computed by DGBTRF. U is stored as an upper triangular band\n* matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and\n* the multipliers used during the factorization are stored in\n* rows KL+KU+2 to 2*KL+KU+1.\n*\n* LDAFB (input) INTEGER\n* The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1.\n*\n* IPIV (input) INTEGER array, dimension (N)\n* The pivot indices from DGBTRF; for 1<=i<=N, row i of the\n* matrix was interchanged with row IPIV(i).\n*\n* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)\n* The right hand side matrix B.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,N).\n*\n* X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)\n* On entry, the solution matrix X, as computed by DGBTRS.\n* On exit, the improved solution matrix X.\n*\n* LDX (input) INTEGER\n* The leading dimension of the array X. LDX >= max(1,N).\n*\n* FERR (output) DOUBLE PRECISION array, dimension (NRHS)\n* The estimated forward error bound for each solution vector\n* X(j) (the j-th column of the solution matrix X).\n* If XTRUE is the true solution corresponding to X(j), FERR(j)\n* is an estimated upper bound for the magnitude of the largest\n* element in (X(j) - XTRUE) divided by the magnitude of the\n* largest element in X(j). The estimate is as reliable as\n* the estimate for RCOND, and is almost always a slight\n* overestimate of the true error.\n*\n* BERR (output) DOUBLE PRECISION array, dimension (NRHS)\n* The componentwise relative backward error of each solution\n* vector X(j) (i.e., the smallest relative change in\n* any element of A or B that makes X(j) an exact solution).\n*\n* WORK (workspace) DOUBLE PRECISION array, dimension (3*N)\n*\n* IWORK (workspace) INTEGER array, dimension (N)\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n* Internal Parameters\n* ===================\n*\n* ITMAX is the maximum number of steps of iterative refinement.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n ferr, berr, info, x = NumRu::Lapack.dgbrfs( trans, kl, ku, ab, afb, ipiv, b, x, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 8 && argc != 8)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 8)", argc);
rblapack_trans = argv[0];
rblapack_kl = argv[1];
rblapack_ku = argv[2];
rblapack_ab = argv[3];
rblapack_afb = argv[4];
rblapack_ipiv = argv[5];
rblapack_b = argv[6];
rblapack_x = argv[7];
if (argc == 8) {
} else if (rblapack_options != Qnil) {
} else {
}
trans = StringValueCStr(rblapack_trans)[0];
ku = NUM2INT(rblapack_ku);
if (!NA_IsNArray(rblapack_afb))
rb_raise(rb_eArgError, "afb (5th argument) must be NArray");
if (NA_RANK(rblapack_afb) != 2)
rb_raise(rb_eArgError, "rank of afb (5th argument) must be %d", 2);
ldafb = NA_SHAPE0(rblapack_afb);
n = NA_SHAPE1(rblapack_afb);
if (NA_TYPE(rblapack_afb) != NA_DFLOAT)
rblapack_afb = na_change_type(rblapack_afb, NA_DFLOAT);
afb = NA_PTR_TYPE(rblapack_afb, doublereal*);
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (7th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (7th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
nrhs = NA_SHAPE1(rblapack_b);
if (NA_TYPE(rblapack_b) != NA_DFLOAT)
rblapack_b = na_change_type(rblapack_b, NA_DFLOAT);
b = NA_PTR_TYPE(rblapack_b, doublereal*);
kl = NUM2INT(rblapack_kl);
if (!NA_IsNArray(rblapack_ipiv))
rb_raise(rb_eArgError, "ipiv (6th argument) must be NArray");
if (NA_RANK(rblapack_ipiv) != 1)
rb_raise(rb_eArgError, "rank of ipiv (6th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_ipiv) != n)
rb_raise(rb_eRuntimeError, "shape 0 of ipiv must be the same as shape 1 of afb");
if (NA_TYPE(rblapack_ipiv) != NA_LINT)
rblapack_ipiv = na_change_type(rblapack_ipiv, NA_LINT);
ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
if (!NA_IsNArray(rblapack_ab))
rb_raise(rb_eArgError, "ab (4th argument) must be NArray");
if (NA_RANK(rblapack_ab) != 2)
rb_raise(rb_eArgError, "rank of ab (4th argument) must be %d", 2);
ldab = NA_SHAPE0(rblapack_ab);
if (NA_SHAPE1(rblapack_ab) != n)
rb_raise(rb_eRuntimeError, "shape 1 of ab must be the same as shape 1 of afb");
if (NA_TYPE(rblapack_ab) != NA_DFLOAT)
rblapack_ab = na_change_type(rblapack_ab, NA_DFLOAT);
ab = NA_PTR_TYPE(rblapack_ab, doublereal*);
if (!NA_IsNArray(rblapack_x))
rb_raise(rb_eArgError, "x (8th argument) must be NArray");
if (NA_RANK(rblapack_x) != 2)
rb_raise(rb_eArgError, "rank of x (8th argument) must be %d", 2);
ldx = NA_SHAPE0(rblapack_x);
if (NA_SHAPE1(rblapack_x) != nrhs)
rb_raise(rb_eRuntimeError, "shape 1 of x must be the same as shape 1 of b");
if (NA_TYPE(rblapack_x) != NA_DFLOAT)
rblapack_x = na_change_type(rblapack_x, NA_DFLOAT);
x = NA_PTR_TYPE(rblapack_x, doublereal*);
{
na_shape_t shape[1];
shape[0] = nrhs;
rblapack_ferr = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
ferr = NA_PTR_TYPE(rblapack_ferr, doublereal*);
{
na_shape_t shape[1];
shape[0] = nrhs;
rblapack_berr = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
berr = NA_PTR_TYPE(rblapack_berr, doublereal*);
{
na_shape_t shape[2];
shape[0] = ldx;
shape[1] = nrhs;
rblapack_x_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
x_out__ = NA_PTR_TYPE(rblapack_x_out__, doublereal*);
MEMCPY(x_out__, x, doublereal, NA_TOTAL(rblapack_x));
rblapack_x = rblapack_x_out__;
x = x_out__;
work = ALLOC_N(doublereal, (3*n));
iwork = ALLOC_N(integer, (n));
dgbrfs_(&trans, &n, &kl, &ku, &nrhs, ab, &ldab, afb, &ldafb, ipiv, b, &ldb, x, &ldx, ferr, berr, work, iwork, &info);
free(work);
free(iwork);
rblapack_info = INT2NUM(info);
return rb_ary_new3(4, rblapack_ferr, rblapack_berr, rblapack_info, rblapack_x);
}
void
init_lapack_dgbrfs(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dgbrfs", rblapack_dgbrfs, -1);
}
|