1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
|
#include "rb_lapack.h"
extern VOID dgesc2_(integer* n, doublereal* a, integer* lda, doublereal* rhs, integer* ipiv, integer* jpiv, doublereal* scale);
static VALUE
rblapack_dgesc2(int argc, VALUE *argv, VALUE self){
VALUE rblapack_a;
doublereal *a;
VALUE rblapack_rhs;
doublereal *rhs;
VALUE rblapack_ipiv;
integer *ipiv;
VALUE rblapack_jpiv;
integer *jpiv;
VALUE rblapack_scale;
doublereal scale;
VALUE rblapack_rhs_out__;
doublereal *rhs_out__;
integer lda;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n scale, rhs = NumRu::Lapack.dgesc2( a, rhs, ipiv, jpiv, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DGESC2( N, A, LDA, RHS, IPIV, JPIV, SCALE )\n\n* Purpose\n* =======\n*\n* DGESC2 solves a system of linear equations\n*\n* A * X = scale* RHS\n*\n* with a general N-by-N matrix A using the LU factorization with\n* complete pivoting computed by DGETC2.\n*\n\n* Arguments\n* =========\n*\n* N (input) INTEGER\n* The order of the matrix A.\n*\n* A (input) DOUBLE PRECISION array, dimension (LDA,N)\n* On entry, the LU part of the factorization of the n-by-n\n* matrix A computed by DGETC2: A = P * L * U * Q\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1, N).\n*\n* RHS (input/output) DOUBLE PRECISION array, dimension (N).\n* On entry, the right hand side vector b.\n* On exit, the solution vector X.\n*\n* IPIV (input) INTEGER array, dimension (N).\n* The pivot indices; for 1 <= i <= N, row i of the\n* matrix has been interchanged with row IPIV(i).\n*\n* JPIV (input) INTEGER array, dimension (N).\n* The pivot indices; for 1 <= j <= N, column j of the\n* matrix has been interchanged with column JPIV(j).\n*\n* SCALE (output) DOUBLE PRECISION\n* On exit, SCALE contains the scale factor. SCALE is chosen\n* 0 <= SCALE <= 1 to prevent owerflow in the solution.\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Bo Kagstrom and Peter Poromaa, Department of Computing Science,\n* Umea University, S-901 87 Umea, Sweden.\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n scale, rhs = NumRu::Lapack.dgesc2( a, rhs, ipiv, jpiv, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 4 && argc != 4)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
rblapack_a = argv[0];
rblapack_rhs = argv[1];
rblapack_ipiv = argv[2];
rblapack_jpiv = argv[3];
if (argc == 4) {
} else if (rblapack_options != Qnil) {
} else {
}
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (1th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (1th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_DFLOAT)
rblapack_a = na_change_type(rblapack_a, NA_DFLOAT);
a = NA_PTR_TYPE(rblapack_a, doublereal*);
if (!NA_IsNArray(rblapack_ipiv))
rb_raise(rb_eArgError, "ipiv (3th argument) must be NArray");
if (NA_RANK(rblapack_ipiv) != 1)
rb_raise(rb_eArgError, "rank of ipiv (3th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_ipiv) != n)
rb_raise(rb_eRuntimeError, "shape 0 of ipiv must be the same as shape 1 of a");
if (NA_TYPE(rblapack_ipiv) != NA_LINT)
rblapack_ipiv = na_change_type(rblapack_ipiv, NA_LINT);
ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
if (!NA_IsNArray(rblapack_rhs))
rb_raise(rb_eArgError, "rhs (2th argument) must be NArray");
if (NA_RANK(rblapack_rhs) != 1)
rb_raise(rb_eArgError, "rank of rhs (2th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_rhs) != n)
rb_raise(rb_eRuntimeError, "shape 0 of rhs must be the same as shape 1 of a");
if (NA_TYPE(rblapack_rhs) != NA_DFLOAT)
rblapack_rhs = na_change_type(rblapack_rhs, NA_DFLOAT);
rhs = NA_PTR_TYPE(rblapack_rhs, doublereal*);
if (!NA_IsNArray(rblapack_jpiv))
rb_raise(rb_eArgError, "jpiv (4th argument) must be NArray");
if (NA_RANK(rblapack_jpiv) != 1)
rb_raise(rb_eArgError, "rank of jpiv (4th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_jpiv) != n)
rb_raise(rb_eRuntimeError, "shape 0 of jpiv must be the same as shape 1 of a");
if (NA_TYPE(rblapack_jpiv) != NA_LINT)
rblapack_jpiv = na_change_type(rblapack_jpiv, NA_LINT);
jpiv = NA_PTR_TYPE(rblapack_jpiv, integer*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_rhs_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
rhs_out__ = NA_PTR_TYPE(rblapack_rhs_out__, doublereal*);
MEMCPY(rhs_out__, rhs, doublereal, NA_TOTAL(rblapack_rhs));
rblapack_rhs = rblapack_rhs_out__;
rhs = rhs_out__;
dgesc2_(&n, a, &lda, rhs, ipiv, jpiv, &scale);
rblapack_scale = rb_float_new((double)scale);
return rb_ary_new3(2, rblapack_scale, rblapack_rhs);
}
void
init_lapack_dgesc2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dgesc2", rblapack_dgesc2, -1);
}
|