1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
#include "rb_lapack.h"
extern VOID dgsvj1_(char* jobv, integer* m, integer* n, integer* n1, doublereal* a, integer* lda, doublereal* d, doublereal* sva, integer* mv, doublereal* v, integer* ldv, doublereal* eps, doublereal* sfmin, doublereal* tol, integer* nsweep, doublereal* work, integer* lwork, integer* info);
static VALUE
rblapack_dgsvj1(int argc, VALUE *argv, VALUE self){
VALUE rblapack_jobv;
char jobv;
VALUE rblapack_m;
integer m;
VALUE rblapack_n1;
integer n1;
VALUE rblapack_a;
doublereal *a;
VALUE rblapack_d;
doublereal *d;
VALUE rblapack_sva;
doublereal *sva;
VALUE rblapack_mv;
integer mv;
VALUE rblapack_v;
doublereal *v;
VALUE rblapack_eps;
doublereal eps;
VALUE rblapack_sfmin;
doublereal sfmin;
VALUE rblapack_tol;
doublereal tol;
VALUE rblapack_nsweep;
integer nsweep;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_info;
integer info;
VALUE rblapack_a_out__;
doublereal *a_out__;
VALUE rblapack_d_out__;
doublereal *d_out__;
VALUE rblapack_sva_out__;
doublereal *sva_out__;
VALUE rblapack_v_out__;
doublereal *v_out__;
doublereal *work;
integer lda;
integer n;
integer ldv;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n info, a, d, sva, v = NumRu::Lapack.dgsvj1( jobv, m, n1, a, d, sva, mv, v, eps, sfmin, tol, nsweep, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DGSVJ1( JOBV, M, N, N1, A, LDA, D, SVA, MV, V, LDV, EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )\n\n* Purpose\n* =======\n*\n* DGSVJ1 is called from SGESVJ as a pre-processor and that is its main\n* purpose. It applies Jacobi rotations in the same way as SGESVJ does, but\n* it targets only particular pivots and it does not check convergence\n* (stopping criterion). Few tunning parameters (marked by [TP]) are\n* available for the implementer.\n*\n* Further Details\n* ~~~~~~~~~~~~~~~\n* DGSVJ1 applies few sweeps of Jacobi rotations in the column space of\n* the input M-by-N matrix A. The pivot pairs are taken from the (1,2)\n* off-diagonal block in the corresponding N-by-N Gram matrix A^T * A. The\n* block-entries (tiles) of the (1,2) off-diagonal block are marked by the\n* [x]'s in the following scheme:\n*\n* | * * * [x] [x] [x]|\n* | * * * [x] [x] [x]| Row-cycling in the nblr-by-nblc [x] blocks.\n* | * * * [x] [x] [x]| Row-cyclic pivoting inside each [x] block.\n* |[x] [x] [x] * * * |\n* |[x] [x] [x] * * * |\n* |[x] [x] [x] * * * |\n*\n* In terms of the columns of A, the first N1 columns are rotated 'against'\n* the remaining N-N1 columns, trying to increase the angle between the\n* corresponding subspaces. The off-diagonal block is N1-by(N-N1) and it is\n* tiled using quadratic tiles of side KBL. Here, KBL is a tunning parmeter.\n* The number of sweeps is given in NSWEEP and the orthogonality threshold\n* is given in TOL.\n*\n* Contributors\n* ~~~~~~~~~~~~\n* Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)\n*\n\n* Arguments\n* =========\n*\n* JOBV (input) CHARACTER*1\n* Specifies whether the output from this procedure is used\n* to compute the matrix V:\n* = 'V': the product of the Jacobi rotations is accumulated\n* by postmulyiplying the N-by-N array V.\n* (See the description of V.)\n* = 'A': the product of the Jacobi rotations is accumulated\n* by postmulyiplying the MV-by-N array V.\n* (See the descriptions of MV and V.)\n* = 'N': the Jacobi rotations are not accumulated.\n*\n* M (input) INTEGER\n* The number of rows of the input matrix A. M >= 0.\n*\n* N (input) INTEGER\n* The number of columns of the input matrix A.\n* M >= N >= 0.\n*\n* N1 (input) INTEGER\n* N1 specifies the 2 x 2 block partition, the first N1 columns are\n* rotated 'against' the remaining N-N1 columns of A.\n*\n* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)\n* On entry, M-by-N matrix A, such that A*diag(D) represents\n* the input matrix.\n* On exit,\n* A_onexit * D_onexit represents the input matrix A*diag(D)\n* post-multiplied by a sequence of Jacobi rotations, where the\n* rotation threshold and the total number of sweeps are given in\n* TOL and NSWEEP, respectively.\n* (See the descriptions of N1, D, TOL and NSWEEP.)\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,M).\n*\n* D (input/workspace/output) DOUBLE PRECISION array, dimension (N)\n* The array D accumulates the scaling factors from the fast scaled\n* Jacobi rotations.\n* On entry, A*diag(D) represents the input matrix.\n* On exit, A_onexit*diag(D_onexit) represents the input matrix\n* post-multiplied by a sequence of Jacobi rotations, where the\n* rotation threshold and the total number of sweeps are given in\n* TOL and NSWEEP, respectively.\n* (See the descriptions of N1, A, TOL and NSWEEP.)\n*\n* SVA (input/workspace/output) DOUBLE PRECISION array, dimension (N)\n* On entry, SVA contains the Euclidean norms of the columns of\n* the matrix A*diag(D).\n* On exit, SVA contains the Euclidean norms of the columns of\n* the matrix onexit*diag(D_onexit).\n*\n* MV (input) INTEGER\n* If JOBV .EQ. 'A', then MV rows of V are post-multipled by a\n* sequence of Jacobi rotations.\n* If JOBV = 'N', then MV is not referenced.\n*\n* V (input/output) DOUBLE PRECISION array, dimension (LDV,N)\n* If JOBV .EQ. 'V' then N rows of V are post-multipled by a\n* sequence of Jacobi rotations.\n* If JOBV .EQ. 'A' then MV rows of V are post-multipled by a\n* sequence of Jacobi rotations.\n* If JOBV = 'N', then V is not referenced.\n*\n* LDV (input) INTEGER\n* The leading dimension of the array V, LDV >= 1.\n* If JOBV = 'V', LDV .GE. N.\n* If JOBV = 'A', LDV .GE. MV.\n*\n* EPS (input) DOUBLE PRECISION\n* EPS = DLAMCH('Epsilon')\n*\n* SFMIN (input) DOUBLE PRECISION\n* SFMIN = DLAMCH('Safe Minimum')\n*\n* TOL (input) DOUBLE PRECISION\n* TOL is the threshold for Jacobi rotations. For a pair\n* A(:,p), A(:,q) of pivot columns, the Jacobi rotation is\n* applied only if DABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.\n*\n* NSWEEP (input) INTEGER\n* NSWEEP is the number of sweeps of Jacobi rotations to be\n* performed.\n*\n* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)\n*\n* LWORK (input) INTEGER\n* LWORK is the dimension of WORK. LWORK .GE. M.\n*\n* INFO (output) INTEGER\n* = 0 : successful exit.\n* < 0 : if INFO = -i, then the i-th argument had an illegal value\n*\n\n* =====================================================================\n*\n* .. Local Parameters ..\n DOUBLE PRECISION ZERO, HALF, ONE, TWO\n PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0,\n + TWO = 2.0D0 )\n* ..\n* .. Local Scalars ..\n DOUBLE PRECISION AAPP, AAPP0, AAPQ, AAQQ, APOAQ, AQOAP, BIG,\n + BIGTHETA, CS, LARGE, MXAAPQ, MXSINJ, ROOTBIG,\n + ROOTEPS, ROOTSFMIN, ROOTTOL, SMALL, SN, T,\n + TEMP1, THETA, THSIGN\n INTEGER BLSKIP, EMPTSW, i, ibr, igl, IERR, IJBLSK,\n + ISWROT, jbc, jgl, KBL, MVL, NOTROT, nblc, nblr,\n + p, PSKIPPED, q, ROWSKIP, SWBAND\n LOGICAL APPLV, ROTOK, RSVEC\n* ..\n* .. Local Arrays ..\n DOUBLE PRECISION FASTR( 5 )\n* ..\n* .. Intrinsic Functions ..\n INTRINSIC DABS, DMAX1, DBLE, MIN0, DSIGN, DSQRT\n* ..\n* .. External Functions ..\n DOUBLE PRECISION DDOT, DNRM2\n INTEGER IDAMAX\n LOGICAL LSAME\n EXTERNAL IDAMAX, LSAME, DDOT, DNRM2\n* ..\n* .. External Subroutines ..\n EXTERNAL DAXPY, DCOPY, DLASCL, DLASSQ, DROTM, DSWAP\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n info, a, d, sva, v = NumRu::Lapack.dgsvj1( jobv, m, n1, a, d, sva, mv, v, eps, sfmin, tol, nsweep, [:lwork => lwork, :usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 12 && argc != 13)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 12)", argc);
rblapack_jobv = argv[0];
rblapack_m = argv[1];
rblapack_n1 = argv[2];
rblapack_a = argv[3];
rblapack_d = argv[4];
rblapack_sva = argv[5];
rblapack_mv = argv[6];
rblapack_v = argv[7];
rblapack_eps = argv[8];
rblapack_sfmin = argv[9];
rblapack_tol = argv[10];
rblapack_nsweep = argv[11];
if (argc == 13) {
rblapack_lwork = argv[12];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
} else {
rblapack_lwork = Qnil;
}
jobv = StringValueCStr(rblapack_jobv)[0];
n1 = NUM2INT(rblapack_n1);
if (!NA_IsNArray(rblapack_d))
rb_raise(rb_eArgError, "d (5th argument) must be NArray");
if (NA_RANK(rblapack_d) != 1)
rb_raise(rb_eArgError, "rank of d (5th argument) must be %d", 1);
n = NA_SHAPE0(rblapack_d);
if (NA_TYPE(rblapack_d) != NA_DFLOAT)
rblapack_d = na_change_type(rblapack_d, NA_DFLOAT);
d = NA_PTR_TYPE(rblapack_d, doublereal*);
mv = NUM2INT(rblapack_mv);
eps = NUM2DBL(rblapack_eps);
tol = NUM2DBL(rblapack_tol);
m = NUM2INT(rblapack_m);
if (!NA_IsNArray(rblapack_sva))
rb_raise(rb_eArgError, "sva (6th argument) must be NArray");
if (NA_RANK(rblapack_sva) != 1)
rb_raise(rb_eArgError, "rank of sva (6th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_sva) != n)
rb_raise(rb_eRuntimeError, "shape 0 of sva must be the same as shape 0 of d");
if (NA_TYPE(rblapack_sva) != NA_DFLOAT)
rblapack_sva = na_change_type(rblapack_sva, NA_DFLOAT);
sva = NA_PTR_TYPE(rblapack_sva, doublereal*);
sfmin = NUM2DBL(rblapack_sfmin);
lwork = m;
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (4th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (4th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
if (NA_SHAPE1(rblapack_a) != n)
rb_raise(rb_eRuntimeError, "shape 1 of a must be the same as shape 0 of d");
if (NA_TYPE(rblapack_a) != NA_DFLOAT)
rblapack_a = na_change_type(rblapack_a, NA_DFLOAT);
a = NA_PTR_TYPE(rblapack_a, doublereal*);
nsweep = NUM2INT(rblapack_nsweep);
if (!NA_IsNArray(rblapack_v))
rb_raise(rb_eArgError, "v (8th argument) must be NArray");
if (NA_RANK(rblapack_v) != 2)
rb_raise(rb_eArgError, "rank of v (8th argument) must be %d", 2);
ldv = NA_SHAPE0(rblapack_v);
if (NA_SHAPE1(rblapack_v) != n)
rb_raise(rb_eRuntimeError, "shape 1 of v must be the same as shape 0 of d");
if (NA_TYPE(rblapack_v) != NA_DFLOAT)
rblapack_v = na_change_type(rblapack_v, NA_DFLOAT);
v = NA_PTR_TYPE(rblapack_v, doublereal*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublereal*);
MEMCPY(a_out__, a, doublereal, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
{
na_shape_t shape[1];
shape[0] = n;
rblapack_d_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
d_out__ = NA_PTR_TYPE(rblapack_d_out__, doublereal*);
MEMCPY(d_out__, d, doublereal, NA_TOTAL(rblapack_d));
rblapack_d = rblapack_d_out__;
d = d_out__;
{
na_shape_t shape[1];
shape[0] = n;
rblapack_sva_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
sva_out__ = NA_PTR_TYPE(rblapack_sva_out__, doublereal*);
MEMCPY(sva_out__, sva, doublereal, NA_TOTAL(rblapack_sva));
rblapack_sva = rblapack_sva_out__;
sva = sva_out__;
{
na_shape_t shape[2];
shape[0] = ldv;
shape[1] = n;
rblapack_v_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
v_out__ = NA_PTR_TYPE(rblapack_v_out__, doublereal*);
MEMCPY(v_out__, v, doublereal, NA_TOTAL(rblapack_v));
rblapack_v = rblapack_v_out__;
v = v_out__;
work = ALLOC_N(doublereal, (lwork));
dgsvj1_(&jobv, &m, &n, &n1, a, &lda, d, sva, &mv, v, &ldv, &eps, &sfmin, &tol, &nsweep, work, &lwork, &info);
free(work);
rblapack_info = INT2NUM(info);
return rb_ary_new3(5, rblapack_info, rblapack_a, rblapack_d, rblapack_sva, rblapack_v);
}
void
init_lapack_dgsvj1(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dgsvj1", rblapack_dgsvj1, -1);
}
|