File: dhsein.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (205 lines) | stat: -rw-r--r-- 14,487 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#include "rb_lapack.h"

extern VOID dhsein_(char* side, char* eigsrc, char* initv, logical* select, integer* n, doublereal* h, integer* ldh, doublereal* wr, doublereal* wi, doublereal* vl, integer* ldvl, doublereal* vr, integer* ldvr, integer* mm, integer* m, doublereal* work, integer* ifaill, integer* ifailr, integer* info);


static VALUE
rblapack_dhsein(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_side;
  char side; 
  VALUE rblapack_eigsrc;
  char eigsrc; 
  VALUE rblapack_initv;
  char initv; 
  VALUE rblapack_select;
  logical *select; 
  VALUE rblapack_h;
  doublereal *h; 
  VALUE rblapack_wr;
  doublereal *wr; 
  VALUE rblapack_wi;
  doublereal *wi; 
  VALUE rblapack_vl;
  doublereal *vl; 
  VALUE rblapack_vr;
  doublereal *vr; 
  VALUE rblapack_m;
  integer m; 
  VALUE rblapack_ifaill;
  integer *ifaill; 
  VALUE rblapack_ifailr;
  integer *ifailr; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_select_out__;
  logical *select_out__;
  VALUE rblapack_wr_out__;
  doublereal *wr_out__;
  VALUE rblapack_vl_out__;
  doublereal *vl_out__;
  VALUE rblapack_vr_out__;
  doublereal *vr_out__;
  doublereal *work;

  integer n;
  integer ldh;
  integer ldvl;
  integer mm;
  integer ldvr;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  m, ifaill, ifailr, info, select, wr, vl, vr = NumRu::Lapack.dhsein( side, eigsrc, initv, select, h, wr, wi, vl, vr, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE DHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, WR, WI, VL, LDVL, VR, LDVR, MM, M, WORK, IFAILL, IFAILR, INFO )\n\n*  Purpose\n*  =======\n*\n*  DHSEIN uses inverse iteration to find specified right and/or left\n*  eigenvectors of a real upper Hessenberg matrix H.\n*\n*  The right eigenvector x and the left eigenvector y of the matrix H\n*  corresponding to an eigenvalue w are defined by:\n*\n*               H * x = w * x,     y**h * H = w * y**h\n*\n*  where y**h denotes the conjugate transpose of the vector y.\n*\n\n*  Arguments\n*  =========\n*\n*  SIDE    (input) CHARACTER*1\n*          = 'R': compute right eigenvectors only;\n*          = 'L': compute left eigenvectors only;\n*          = 'B': compute both right and left eigenvectors.\n*\n*  EIGSRC  (input) CHARACTER*1\n*          Specifies the source of eigenvalues supplied in (WR,WI):\n*          = 'Q': the eigenvalues were found using DHSEQR; thus, if\n*                 H has zero subdiagonal elements, and so is\n*                 block-triangular, then the j-th eigenvalue can be\n*                 assumed to be an eigenvalue of the block containing\n*                 the j-th row/column.  This property allows DHSEIN to\n*                 perform inverse iteration on just one diagonal block.\n*          = 'N': no assumptions are made on the correspondence\n*                 between eigenvalues and diagonal blocks.  In this\n*                 case, DHSEIN must always perform inverse iteration\n*                 using the whole matrix H.\n*\n*  INITV   (input) CHARACTER*1\n*          = 'N': no initial vectors are supplied;\n*          = 'U': user-supplied initial vectors are stored in the arrays\n*                 VL and/or VR.\n*\n*  SELECT  (input/output) LOGICAL array, dimension (N)\n*          Specifies the eigenvectors to be computed. To select the\n*          real eigenvector corresponding to a real eigenvalue WR(j),\n*          SELECT(j) must be set to .TRUE.. To select the complex\n*          eigenvector corresponding to a complex eigenvalue\n*          (WR(j),WI(j)), with complex conjugate (WR(j+1),WI(j+1)),\n*          either SELECT(j) or SELECT(j+1) or both must be set to\n*          .TRUE.; then on exit SELECT(j) is .TRUE. and SELECT(j+1) is\n*          .FALSE..\n*\n*  N       (input) INTEGER\n*          The order of the matrix H.  N >= 0.\n*\n*  H       (input) DOUBLE PRECISION array, dimension (LDH,N)\n*          The upper Hessenberg matrix H.\n*\n*  LDH     (input) INTEGER\n*          The leading dimension of the array H.  LDH >= max(1,N).\n*\n*  WR      (input/output) DOUBLE PRECISION array, dimension (N)\n*  WI      (input) DOUBLE PRECISION array, dimension (N)\n*          On entry, the real and imaginary parts of the eigenvalues of\n*          H; a complex conjugate pair of eigenvalues must be stored in\n*          consecutive elements of WR and WI.\n*          On exit, WR may have been altered since close eigenvalues\n*          are perturbed slightly in searching for independent\n*          eigenvectors.\n*\n*  VL      (input/output) DOUBLE PRECISION array, dimension (LDVL,MM)\n*          On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must\n*          contain starting vectors for the inverse iteration for the\n*          left eigenvectors; the starting vector for each eigenvector\n*          must be in the same column(s) in which the eigenvector will\n*          be stored.\n*          On exit, if SIDE = 'L' or 'B', the left eigenvectors\n*          specified by SELECT will be stored consecutively in the\n*          columns of VL, in the same order as their eigenvalues. A\n*          complex eigenvector corresponding to a complex eigenvalue is\n*          stored in two consecutive columns, the first holding the real\n*          part and the second the imaginary part.\n*          If SIDE = 'R', VL is not referenced.\n*\n*  LDVL    (input) INTEGER\n*          The leading dimension of the array VL.\n*          LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.\n*\n*  VR      (input/output) DOUBLE PRECISION array, dimension (LDVR,MM)\n*          On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must\n*          contain starting vectors for the inverse iteration for the\n*          right eigenvectors; the starting vector for each eigenvector\n*          must be in the same column(s) in which the eigenvector will\n*          be stored.\n*          On exit, if SIDE = 'R' or 'B', the right eigenvectors\n*          specified by SELECT will be stored consecutively in the\n*          columns of VR, in the same order as their eigenvalues. A\n*          complex eigenvector corresponding to a complex eigenvalue is\n*          stored in two consecutive columns, the first holding the real\n*          part and the second the imaginary part.\n*          If SIDE = 'L', VR is not referenced.\n*\n*  LDVR    (input) INTEGER\n*          The leading dimension of the array VR.\n*          LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.\n*\n*  MM      (input) INTEGER\n*          The number of columns in the arrays VL and/or VR. MM >= M.\n*\n*  M       (output) INTEGER\n*          The number of columns in the arrays VL and/or VR required to\n*          store the eigenvectors; each selected real eigenvector\n*          occupies one column and each selected complex eigenvector\n*          occupies two columns.\n*\n*  WORK    (workspace) DOUBLE PRECISION array, dimension ((N+2)*N)\n*\n*  IFAILL  (output) INTEGER array, dimension (MM)\n*          If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left\n*          eigenvector in the i-th column of VL (corresponding to the\n*          eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the\n*          eigenvector converged satisfactorily. If the i-th and (i+1)th\n*          columns of VL hold a complex eigenvector, then IFAILL(i) and\n*          IFAILL(i+1) are set to the same value.\n*          If SIDE = 'R', IFAILL is not referenced.\n*\n*  IFAILR  (output) INTEGER array, dimension (MM)\n*          If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right\n*          eigenvector in the i-th column of VR (corresponding to the\n*          eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the\n*          eigenvector converged satisfactorily. If the i-th and (i+1)th\n*          columns of VR hold a complex eigenvector, then IFAILR(i) and\n*          IFAILR(i+1) are set to the same value.\n*          If SIDE = 'L', IFAILR is not referenced.\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value\n*          > 0:  if INFO = i, i is the number of eigenvectors which\n*                failed to converge; see IFAILL and IFAILR for further\n*                details.\n*\n\n*  Further Details\n*  ===============\n*\n*  Each eigenvector is normalized so that the element of largest\n*  magnitude has magnitude 1; here the magnitude of a complex number\n*  (x,y) is taken to be |x|+|y|.\n*\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  m, ifaill, ifailr, info, select, wr, vl, vr = NumRu::Lapack.dhsein( side, eigsrc, initv, select, h, wr, wi, vl, vr, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 9 && argc != 9)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 9)", argc);
  rblapack_side = argv[0];
  rblapack_eigsrc = argv[1];
  rblapack_initv = argv[2];
  rblapack_select = argv[3];
  rblapack_h = argv[4];
  rblapack_wr = argv[5];
  rblapack_wi = argv[6];
  rblapack_vl = argv[7];
  rblapack_vr = argv[8];
  if (argc == 9) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  side = StringValueCStr(rblapack_side)[0];
  initv = StringValueCStr(rblapack_initv)[0];
  if (!NA_IsNArray(rblapack_h))
    rb_raise(rb_eArgError, "h (5th argument) must be NArray");
  if (NA_RANK(rblapack_h) != 2)
    rb_raise(rb_eArgError, "rank of h (5th argument) must be %d", 2);
  ldh = NA_SHAPE0(rblapack_h);
  n = NA_SHAPE1(rblapack_h);
  if (NA_TYPE(rblapack_h) != NA_DFLOAT)
    rblapack_h = na_change_type(rblapack_h, NA_DFLOAT);
  h = NA_PTR_TYPE(rblapack_h, doublereal*);
  if (!NA_IsNArray(rblapack_wi))
    rb_raise(rb_eArgError, "wi (7th argument) must be NArray");
  if (NA_RANK(rblapack_wi) != 1)
    rb_raise(rb_eArgError, "rank of wi (7th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_wi) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of wi must be the same as shape 1 of h");
  if (NA_TYPE(rblapack_wi) != NA_DFLOAT)
    rblapack_wi = na_change_type(rblapack_wi, NA_DFLOAT);
  wi = NA_PTR_TYPE(rblapack_wi, doublereal*);
  if (!NA_IsNArray(rblapack_vr))
    rb_raise(rb_eArgError, "vr (9th argument) must be NArray");
  if (NA_RANK(rblapack_vr) != 2)
    rb_raise(rb_eArgError, "rank of vr (9th argument) must be %d", 2);
  ldvr = NA_SHAPE0(rblapack_vr);
  mm = NA_SHAPE1(rblapack_vr);
  if (NA_TYPE(rblapack_vr) != NA_DFLOAT)
    rblapack_vr = na_change_type(rblapack_vr, NA_DFLOAT);
  vr = NA_PTR_TYPE(rblapack_vr, doublereal*);
  eigsrc = StringValueCStr(rblapack_eigsrc)[0];
  if (!NA_IsNArray(rblapack_wr))
    rb_raise(rb_eArgError, "wr (6th argument) must be NArray");
  if (NA_RANK(rblapack_wr) != 1)
    rb_raise(rb_eArgError, "rank of wr (6th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_wr) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of wr must be the same as shape 1 of h");
  if (NA_TYPE(rblapack_wr) != NA_DFLOAT)
    rblapack_wr = na_change_type(rblapack_wr, NA_DFLOAT);
  wr = NA_PTR_TYPE(rblapack_wr, doublereal*);
  if (!NA_IsNArray(rblapack_select))
    rb_raise(rb_eArgError, "select (4th argument) must be NArray");
  if (NA_RANK(rblapack_select) != 1)
    rb_raise(rb_eArgError, "rank of select (4th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_select) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of select must be the same as shape 1 of h");
  if (NA_TYPE(rblapack_select) != NA_LINT)
    rblapack_select = na_change_type(rblapack_select, NA_LINT);
  select = NA_PTR_TYPE(rblapack_select, logical*);
  if (!NA_IsNArray(rblapack_vl))
    rb_raise(rb_eArgError, "vl (8th argument) must be NArray");
  if (NA_RANK(rblapack_vl) != 2)
    rb_raise(rb_eArgError, "rank of vl (8th argument) must be %d", 2);
  ldvl = NA_SHAPE0(rblapack_vl);
  if (NA_SHAPE1(rblapack_vl) != mm)
    rb_raise(rb_eRuntimeError, "shape 1 of vl must be the same as shape 1 of vr");
  if (NA_TYPE(rblapack_vl) != NA_DFLOAT)
    rblapack_vl = na_change_type(rblapack_vl, NA_DFLOAT);
  vl = NA_PTR_TYPE(rblapack_vl, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = mm;
    rblapack_ifaill = na_make_object(NA_LINT, 1, shape, cNArray);
  }
  ifaill = NA_PTR_TYPE(rblapack_ifaill, integer*);
  {
    na_shape_t shape[1];
    shape[0] = mm;
    rblapack_ifailr = na_make_object(NA_LINT, 1, shape, cNArray);
  }
  ifailr = NA_PTR_TYPE(rblapack_ifailr, integer*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_select_out__ = na_make_object(NA_LINT, 1, shape, cNArray);
  }
  select_out__ = NA_PTR_TYPE(rblapack_select_out__, logical*);
  MEMCPY(select_out__, select, logical, NA_TOTAL(rblapack_select));
  rblapack_select = rblapack_select_out__;
  select = select_out__;
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_wr_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  wr_out__ = NA_PTR_TYPE(rblapack_wr_out__, doublereal*);
  MEMCPY(wr_out__, wr, doublereal, NA_TOTAL(rblapack_wr));
  rblapack_wr = rblapack_wr_out__;
  wr = wr_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldvl;
    shape[1] = mm;
    rblapack_vl_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
  }
  vl_out__ = NA_PTR_TYPE(rblapack_vl_out__, doublereal*);
  MEMCPY(vl_out__, vl, doublereal, NA_TOTAL(rblapack_vl));
  rblapack_vl = rblapack_vl_out__;
  vl = vl_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldvr;
    shape[1] = mm;
    rblapack_vr_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
  }
  vr_out__ = NA_PTR_TYPE(rblapack_vr_out__, doublereal*);
  MEMCPY(vr_out__, vr, doublereal, NA_TOTAL(rblapack_vr));
  rblapack_vr = rblapack_vr_out__;
  vr = vr_out__;
  work = ALLOC_N(doublereal, ((n+2)*n));

  dhsein_(&side, &eigsrc, &initv, select, &n, h, &ldh, wr, wi, vl, &ldvl, vr, &ldvr, &mm, &m, work, ifaill, ifailr, &info);

  free(work);
  rblapack_m = INT2NUM(m);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(8, rblapack_m, rblapack_ifaill, rblapack_ifailr, rblapack_info, rblapack_select, rblapack_wr, rblapack_vl, rblapack_vr);
}

void
init_lapack_dhsein(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "dhsein", rblapack_dhsein, -1);
}