File: dhseqr.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (153 lines) | stat: -rw-r--r-- 15,455 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#include "rb_lapack.h"

extern VOID dhseqr_(char* job, char* compz, integer* n, integer* ilo, integer* ihi, doublereal* h, integer* ldh, doublereal* wr, doublereal* wi, doublereal* z, integer* ldz, doublereal* work, integer* lwork, integer* info);


static VALUE
rblapack_dhseqr(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_job;
  char job; 
  VALUE rblapack_compz;
  char compz; 
  VALUE rblapack_ilo;
  integer ilo; 
  VALUE rblapack_ihi;
  integer ihi; 
  VALUE rblapack_h;
  doublereal *h; 
  VALUE rblapack_z;
  doublereal *z; 
  VALUE rblapack_ldz;
  integer ldz; 
  VALUE rblapack_lwork;
  integer lwork; 
  VALUE rblapack_wr;
  doublereal *wr; 
  VALUE rblapack_wi;
  doublereal *wi; 
  VALUE rblapack_work;
  doublereal *work; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_h_out__;
  doublereal *h_out__;
  VALUE rblapack_z_out__;
  doublereal *z_out__;

  integer ldh;
  integer n;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  wr, wi, work, info, h, z = NumRu::Lapack.dhseqr( job, compz, ilo, ihi, h, z, ldz, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE DHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z, LDZ, WORK, LWORK, INFO )\n\n*     Purpose\n*     =======\n*\n*     DHSEQR computes the eigenvalues of a Hessenberg matrix H\n*     and, optionally, the matrices T and Z from the Schur decomposition\n*     H = Z T Z**T, where T is an upper quasi-triangular matrix (the\n*     Schur form), and Z is the orthogonal matrix of Schur vectors.\n*\n*     Optionally Z may be postmultiplied into an input orthogonal\n*     matrix Q so that this routine can give the Schur factorization\n*     of a matrix A which has been reduced to the Hessenberg form H\n*     by the orthogonal matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.\n*\n\n*     Arguments\n*     =========\n*\n*     JOB   (input) CHARACTER*1\n*           = 'E':  compute eigenvalues only;\n*           = 'S':  compute eigenvalues and the Schur form T.\n*\n*     COMPZ (input) CHARACTER*1\n*           = 'N':  no Schur vectors are computed;\n*           = 'I':  Z is initialized to the unit matrix and the matrix Z\n*                   of Schur vectors of H is returned;\n*           = 'V':  Z must contain an orthogonal matrix Q on entry, and\n*                   the product Q*Z is returned.\n*\n*     N     (input) INTEGER\n*           The order of the matrix H.  N .GE. 0.\n*\n*     ILO   (input) INTEGER\n*     IHI   (input) INTEGER\n*           It is assumed that H is already upper triangular in rows\n*           and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally\n*           set by a previous call to DGEBAL, and then passed to DGEHRD\n*           when the matrix output by DGEBAL is reduced to Hessenberg\n*           form. Otherwise ILO and IHI should be set to 1 and N\n*           respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.\n*           If N = 0, then ILO = 1 and IHI = 0.\n*\n*     H     (input/output) DOUBLE PRECISION array, dimension (LDH,N)\n*           On entry, the upper Hessenberg matrix H.\n*           On exit, if INFO = 0 and JOB = 'S', then H contains the\n*           upper quasi-triangular matrix T from the Schur decomposition\n*           (the Schur form); 2-by-2 diagonal blocks (corresponding to\n*           complex conjugate pairs of eigenvalues) are returned in\n*           standard form, with H(i,i) = H(i+1,i+1) and\n*           H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and JOB = 'E', the\n*           contents of H are unspecified on exit.  (The output value of\n*           H when INFO.GT.0 is given under the description of INFO\n*           below.)\n*\n*           Unlike earlier versions of DHSEQR, this subroutine may\n*           explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1\n*           or j = IHI+1, IHI+2, ... N.\n*\n*     LDH   (input) INTEGER\n*           The leading dimension of the array H. LDH .GE. max(1,N).\n*\n*     WR    (output) DOUBLE PRECISION array, dimension (N)\n*     WI    (output) DOUBLE PRECISION array, dimension (N)\n*           The real and imaginary parts, respectively, of the computed\n*           eigenvalues. If two eigenvalues are computed as a complex\n*           conjugate pair, they are stored in consecutive elements of\n*           WR and WI, say the i-th and (i+1)th, with WI(i) .GT. 0 and\n*           WI(i+1) .LT. 0. If JOB = 'S', the eigenvalues are stored in\n*           the same order as on the diagonal of the Schur form returned\n*           in H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2\n*           diagonal block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and\n*           WI(i+1) = -WI(i).\n*\n*     Z     (input/output) DOUBLE PRECISION array, dimension (LDZ,N)\n*           If COMPZ = 'N', Z is not referenced.\n*           If COMPZ = 'I', on entry Z need not be set and on exit,\n*           if INFO = 0, Z contains the orthogonal matrix Z of the Schur\n*           vectors of H.  If COMPZ = 'V', on entry Z must contain an\n*           N-by-N matrix Q, which is assumed to be equal to the unit\n*           matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit,\n*           if INFO = 0, Z contains Q*Z.\n*           Normally Q is the orthogonal matrix generated by DORGHR\n*           after the call to DGEHRD which formed the Hessenberg matrix\n*           H. (The output value of Z when INFO.GT.0 is given under\n*           the description of INFO below.)\n*\n*     LDZ   (input) INTEGER\n*           The leading dimension of the array Z.  if COMPZ = 'I' or\n*           COMPZ = 'V', then LDZ.GE.MAX(1,N).  Otherwize, LDZ.GE.1.\n*\n*     WORK  (workspace/output) DOUBLE PRECISION array, dimension (LWORK)\n*           On exit, if INFO = 0, WORK(1) returns an estimate of\n*           the optimal value for LWORK.\n*\n*     LWORK (input) INTEGER\n*           The dimension of the array WORK.  LWORK .GE. max(1,N)\n*           is sufficient and delivers very good and sometimes\n*           optimal performance.  However, LWORK as large as 11*N\n*           may be required for optimal performance.  A workspace\n*           query is recommended to determine the optimal workspace\n*           size.\n*\n*           If LWORK = -1, then DHSEQR does a workspace query.\n*           In this case, DHSEQR checks the input parameters and\n*           estimates the optimal workspace size for the given\n*           values of N, ILO and IHI.  The estimate is returned\n*           in WORK(1).  No error message related to LWORK is\n*           issued by XERBLA.  Neither H nor Z are accessed.\n*\n*\n*     INFO  (output) INTEGER\n*             =  0:  successful exit\n*           .LT. 0:  if INFO = -i, the i-th argument had an illegal\n*                    value\n*           .GT. 0:  if INFO = i, DHSEQR failed to compute all of\n*                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR\n*                and WI contain those eigenvalues which have been\n*                successfully computed.  (Failures are rare.)\n*\n*                If INFO .GT. 0 and JOB = 'E', then on exit, the\n*                remaining unconverged eigenvalues are the eigen-\n*                values of the upper Hessenberg matrix rows and\n*                columns ILO through INFO of the final, output\n*                value of H.\n*\n*                If INFO .GT. 0 and JOB   = 'S', then on exit\n*\n*           (*)  (initial value of H)*U  = U*(final value of H)\n*\n*                where U is an orthogonal matrix.  The final\n*                value of H is upper Hessenberg and quasi-triangular\n*                in rows and columns INFO+1 through IHI.\n*\n*                If INFO .GT. 0 and COMPZ = 'V', then on exit\n*\n*                  (final value of Z)  =  (initial value of Z)*U\n*\n*                where U is the orthogonal matrix in (*) (regard-\n*                less of the value of JOB.)\n*\n*                If INFO .GT. 0 and COMPZ = 'I', then on exit\n*                      (final value of Z)  = U\n*                where U is the orthogonal matrix in (*) (regard-\n*                less of the value of JOB.)\n*\n*                If INFO .GT. 0 and COMPZ = 'N', then Z is not\n*                accessed.\n*\n\n*     ================================================================\n*             Default values supplied by\n*             ILAENV(ISPEC,'DHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK).\n*             It is suggested that these defaults be adjusted in order\n*             to attain best performance in each particular\n*             computational environment.\n*\n*            ISPEC=12: The DLAHQR vs DLAQR0 crossover point.\n*                      Default: 75. (Must be at least 11.)\n*\n*            ISPEC=13: Recommended deflation window size.\n*                      This depends on ILO, IHI and NS.  NS is the\n*                      number of simultaneous shifts returned\n*                      by ILAENV(ISPEC=15).  (See ISPEC=15 below.)\n*                      The default for (IHI-ILO+1).LE.500 is NS.\n*                      The default for (IHI-ILO+1).GT.500 is 3*NS/2.\n*\n*            ISPEC=14: Nibble crossover point. (See IPARMQ for\n*                      details.)  Default: 14% of deflation window\n*                      size.\n*\n*            ISPEC=15: Number of simultaneous shifts in a multishift\n*                      QR iteration.\n*\n*                      If IHI-ILO+1 is ...\n*\n*                      greater than      ...but less    ... the\n*                      or equal to ...      than        default is\n*\n*                           1               30          NS =   2(+)\n*                          30               60          NS =   4(+)\n*                          60              150          NS =  10(+)\n*                         150              590          NS =  **\n*                         590             3000          NS =  64\n*                        3000             6000          NS = 128\n*                        6000             infinity      NS = 256\n*\n*                  (+)  By default some or all matrices of this order\n*                       are passed to the implicit double shift routine\n*                       DLAHQR and this parameter is ignored.  See\n*                       ISPEC=12 above and comments in IPARMQ for\n*                       details.\n*\n*                 (**)  The asterisks (**) indicate an ad-hoc\n*                       function of N increasing from 10 to 64.\n*\n*            ISPEC=16: Select structured matrix multiply.\n*                      If the number of simultaneous shifts (specified\n*                      by ISPEC=15) is less than 14, then the default\n*                      for ISPEC=16 is 0.  Otherwise the default for\n*                      ISPEC=16 is 2.\n*\n*     ================================================================\n*     Based on contributions by\n*        Karen Braman and Ralph Byers, Department of Mathematics,\n*        University of Kansas, USA\n*\n*     ================================================================\n*     References:\n*       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR\n*       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3\n*       Performance, SIAM Journal of Matrix Analysis, volume 23, pages\n*       929--947, 2002.\n*\n*       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR\n*       Algorithm Part II: Aggressive Early Deflation, SIAM Journal\n*       of Matrix Analysis, volume 23, pages 948--973, 2002.\n*\n*     ================================================================\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  wr, wi, work, info, h, z = NumRu::Lapack.dhseqr( job, compz, ilo, ihi, h, z, ldz, [:lwork => lwork, :usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 7 && argc != 8)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 7)", argc);
  rblapack_job = argv[0];
  rblapack_compz = argv[1];
  rblapack_ilo = argv[2];
  rblapack_ihi = argv[3];
  rblapack_h = argv[4];
  rblapack_z = argv[5];
  rblapack_ldz = argv[6];
  if (argc == 8) {
    rblapack_lwork = argv[7];
  } else if (rblapack_options != Qnil) {
    rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
  } else {
    rblapack_lwork = Qnil;
  }

  job = StringValueCStr(rblapack_job)[0];
  ilo = NUM2INT(rblapack_ilo);
  if (!NA_IsNArray(rblapack_h))
    rb_raise(rb_eArgError, "h (5th argument) must be NArray");
  if (NA_RANK(rblapack_h) != 2)
    rb_raise(rb_eArgError, "rank of h (5th argument) must be %d", 2);
  ldh = NA_SHAPE0(rblapack_h);
  n = NA_SHAPE1(rblapack_h);
  if (NA_TYPE(rblapack_h) != NA_DFLOAT)
    rblapack_h = na_change_type(rblapack_h, NA_DFLOAT);
  h = NA_PTR_TYPE(rblapack_h, doublereal*);
  ldz = NUM2INT(rblapack_ldz);
  compz = StringValueCStr(rblapack_compz)[0];
  if (!NA_IsNArray(rblapack_z))
    rb_raise(rb_eArgError, "z (6th argument) must be NArray");
  if (NA_RANK(rblapack_z) != 2)
    rb_raise(rb_eArgError, "rank of z (6th argument) must be %d", 2);
  if (NA_SHAPE0(rblapack_z) != (lsame_(&compz,"N") ? 0 : ldz))
    rb_raise(rb_eRuntimeError, "shape 0 of z must be %d", lsame_(&compz,"N") ? 0 : ldz);
  if (NA_SHAPE1(rblapack_z) != (lsame_(&compz,"N") ? 0 : n))
    rb_raise(rb_eRuntimeError, "shape 1 of z must be %d", lsame_(&compz,"N") ? 0 : n);
  if (NA_TYPE(rblapack_z) != NA_DFLOAT)
    rblapack_z = na_change_type(rblapack_z, NA_DFLOAT);
  z = NA_PTR_TYPE(rblapack_z, doublereal*);
  ihi = NUM2INT(rblapack_ihi);
  if (rblapack_lwork == Qnil)
    lwork = n;
  else {
    lwork = NUM2INT(rblapack_lwork);
  }
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_wr = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  wr = NA_PTR_TYPE(rblapack_wr, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_wi = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  wi = NA_PTR_TYPE(rblapack_wi, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,lwork);
    rblapack_work = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  work = NA_PTR_TYPE(rblapack_work, doublereal*);
  {
    na_shape_t shape[2];
    shape[0] = ldh;
    shape[1] = n;
    rblapack_h_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
  }
  h_out__ = NA_PTR_TYPE(rblapack_h_out__, doublereal*);
  MEMCPY(h_out__, h, doublereal, NA_TOTAL(rblapack_h));
  rblapack_h = rblapack_h_out__;
  h = h_out__;
  {
    na_shape_t shape[2];
    shape[0] = lsame_(&compz,"N") ? 0 : ldz;
    shape[1] = lsame_(&compz,"N") ? 0 : n;
    rblapack_z_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
  }
  z_out__ = NA_PTR_TYPE(rblapack_z_out__, doublereal*);
  MEMCPY(z_out__, z, doublereal, NA_TOTAL(rblapack_z));
  rblapack_z = rblapack_z_out__;
  z = z_out__;

  dhseqr_(&job, &compz, &n, &ilo, &ihi, h, &ldh, wr, wi, z, &ldz, work, &lwork, &info);

  rblapack_info = INT2NUM(info);
  return rb_ary_new3(6, rblapack_wr, rblapack_wi, rblapack_work, rblapack_info, rblapack_h, rblapack_z);
}

void
init_lapack_dhseqr(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "dhseqr", rblapack_dhseqr, -1);
}