1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
|
#include "rb_lapack.h"
extern doublereal dla_syrpvgrw_(char* uplo, integer* n, integer* info, doublereal* a, integer* lda, doublereal* af, integer* ldaf, integer* ipiv, doublereal* work);
static VALUE
rblapack_dla_syrpvgrw(int argc, VALUE *argv, VALUE self){
#ifdef USEXBLAS
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_info;
integer info;
VALUE rblapack_a;
doublereal *a;
VALUE rblapack_af;
doublereal *af;
VALUE rblapack_ipiv;
integer *ipiv;
VALUE rblapack_work;
doublereal *work;
VALUE rblapack___out__;
doublereal __out__;
integer lda;
integer n;
integer ldaf;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n __out__ = NumRu::Lapack.dla_syrpvgrw( uplo, info, a, af, ipiv, work, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n DOUBLE PRECISION FUNCTION DLA_SYRPVGRW( UPLO, N, INFO, A, LDA, AF, LDAF, IPIV, WORK )\n\n* Purpose\n* =======\n* \n* DLA_SYRPVGRW computes the reciprocal pivot growth factor\n* norm(A)/norm(U). The \"max absolute element\" norm is used. If this is\n* much less than 1, the stability of the LU factorization of the\n* (equilibrated) matrix A could be poor. This also means that the\n* solution X, estimated condition numbers, and error bounds could be\n* unreliable.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangle of A is stored;\n* = 'L': Lower triangle of A is stored.\n*\n* N (input) INTEGER\n* The number of linear equations, i.e., the order of the\n* matrix A. N >= 0.\n*\n* INFO (input) INTEGER\n* The value of INFO returned from DSYTRF, .i.e., the pivot in\n* column INFO is exactly 0.\n*\n* NCOLS (input) INTEGER\n* The number of columns of the matrix A. NCOLS >= 0.\n*\n* A (input) DOUBLE PRECISION array, dimension (LDA,N)\n* On entry, the N-by-N matrix A.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* AF (input) DOUBLE PRECISION array, dimension (LDAF,N)\n* The block diagonal matrix D and the multipliers used to\n* obtain the factor U or L as computed by DSYTRF.\n*\n* LDAF (input) INTEGER\n* The leading dimension of the array AF. LDAF >= max(1,N).\n*\n* IPIV (input) INTEGER array, dimension (N)\n* Details of the interchanges and the block structure of D\n* as determined by DSYTRF.\n*\n* WORK (input) DOUBLE PRECISION array, dimension (2*N)\n*\n\n* =====================================================================\n*\n* .. Local Scalars ..\n INTEGER NCOLS, I, J, K, KP\n DOUBLE PRECISION AMAX, UMAX, RPVGRW, TMP\n LOGICAL UPPER\n* ..\n* .. Intrinsic Functions ..\n INTRINSIC ABS, MAX, MIN\n* ..\n* .. External Functions ..\n EXTERNAL LSAME, DLASET\n LOGICAL LSAME\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n __out__ = NumRu::Lapack.dla_syrpvgrw( uplo, info, a, af, ipiv, work, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 6 && argc != 6)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
rblapack_uplo = argv[0];
rblapack_info = argv[1];
rblapack_a = argv[2];
rblapack_af = argv[3];
rblapack_ipiv = argv[4];
rblapack_work = argv[5];
if (argc == 6) {
} else if (rblapack_options != Qnil) {
} else {
}
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (3th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_DFLOAT)
rblapack_a = na_change_type(rblapack_a, NA_DFLOAT);
a = NA_PTR_TYPE(rblapack_a, doublereal*);
if (!NA_IsNArray(rblapack_ipiv))
rb_raise(rb_eArgError, "ipiv (5th argument) must be NArray");
if (NA_RANK(rblapack_ipiv) != 1)
rb_raise(rb_eArgError, "rank of ipiv (5th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_ipiv) != n)
rb_raise(rb_eRuntimeError, "shape 0 of ipiv must be the same as shape 1 of a");
if (NA_TYPE(rblapack_ipiv) != NA_LINT)
rblapack_ipiv = na_change_type(rblapack_ipiv, NA_LINT);
ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
info = NUM2INT(rblapack_info);
if (!NA_IsNArray(rblapack_af))
rb_raise(rb_eArgError, "af (4th argument) must be NArray");
if (NA_RANK(rblapack_af) != 2)
rb_raise(rb_eArgError, "rank of af (4th argument) must be %d", 2);
ldaf = NA_SHAPE0(rblapack_af);
if (NA_SHAPE1(rblapack_af) != n)
rb_raise(rb_eRuntimeError, "shape 1 of af must be the same as shape 1 of a");
if (NA_TYPE(rblapack_af) != NA_DFLOAT)
rblapack_af = na_change_type(rblapack_af, NA_DFLOAT);
af = NA_PTR_TYPE(rblapack_af, doublereal*);
if (!NA_IsNArray(rblapack_work))
rb_raise(rb_eArgError, "work (6th argument) must be NArray");
if (NA_RANK(rblapack_work) != 1)
rb_raise(rb_eArgError, "rank of work (6th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_work) != (2*n))
rb_raise(rb_eRuntimeError, "shape 0 of work must be %d", 2*n);
if (NA_TYPE(rblapack_work) != NA_DFLOAT)
rblapack_work = na_change_type(rblapack_work, NA_DFLOAT);
work = NA_PTR_TYPE(rblapack_work, doublereal*);
__out__ = dla_syrpvgrw_(&uplo, &n, &info, a, &lda, af, &ldaf, ipiv, work);
rblapack___out__ = rb_float_new((double)__out__);
return rblapack___out__;
#else
return Qnil;
#endif
}
void
init_lapack_dla_syrpvgrw(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dla_syrpvgrw", rblapack_dla_syrpvgrw, -1);
}
|