File: dlabrd.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (132 lines) | stat: -rw-r--r-- 8,957 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#include "rb_lapack.h"

extern VOID dlabrd_(integer* m, integer* n, integer* nb, doublereal* a, integer* lda, doublereal* d, doublereal* e, doublereal* tauq, doublereal* taup, doublereal* x, integer* ldx, doublereal* y, integer* ldy);


static VALUE
rblapack_dlabrd(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_m;
  integer m; 
  VALUE rblapack_nb;
  integer nb; 
  VALUE rblapack_a;
  doublereal *a; 
  VALUE rblapack_d;
  doublereal *d; 
  VALUE rblapack_e;
  doublereal *e; 
  VALUE rblapack_tauq;
  doublereal *tauq; 
  VALUE rblapack_taup;
  doublereal *taup; 
  VALUE rblapack_x;
  doublereal *x; 
  VALUE rblapack_y;
  doublereal *y; 
  VALUE rblapack_a_out__;
  doublereal *a_out__;

  integer lda;
  integer n;
  integer ldx;
  integer ldy;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  d, e, tauq, taup, x, y, a = NumRu::Lapack.dlabrd( m, nb, a, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE DLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y, LDY )\n\n*  Purpose\n*  =======\n*\n*  DLABRD reduces the first NB rows and columns of a real general\n*  m by n matrix A to upper or lower bidiagonal form by an orthogonal\n*  transformation Q' * A * P, and returns the matrices X and Y which\n*  are needed to apply the transformation to the unreduced part of A.\n*\n*  If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower\n*  bidiagonal form.\n*\n*  This is an auxiliary routine called by DGEBRD\n*\n\n*  Arguments\n*  =========\n*\n*  M       (input) INTEGER\n*          The number of rows in the matrix A.\n*\n*  N       (input) INTEGER\n*          The number of columns in the matrix A.\n*\n*  NB      (input) INTEGER\n*          The number of leading rows and columns of A to be reduced.\n*\n*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)\n*          On entry, the m by n general matrix to be reduced.\n*          On exit, the first NB rows and columns of the matrix are\n*          overwritten; the rest of the array is unchanged.\n*          If m >= n, elements on and below the diagonal in the first NB\n*            columns, with the array TAUQ, represent the orthogonal\n*            matrix Q as a product of elementary reflectors; and\n*            elements above the diagonal in the first NB rows, with the\n*            array TAUP, represent the orthogonal matrix P as a product\n*            of elementary reflectors.\n*          If m < n, elements below the diagonal in the first NB\n*            columns, with the array TAUQ, represent the orthogonal\n*            matrix Q as a product of elementary reflectors, and\n*            elements on and above the diagonal in the first NB rows,\n*            with the array TAUP, represent the orthogonal matrix P as\n*            a product of elementary reflectors.\n*          See Further Details.\n*\n*  LDA     (input) INTEGER\n*          The leading dimension of the array A.  LDA >= max(1,M).\n*\n*  D       (output) DOUBLE PRECISION array, dimension (NB)\n*          The diagonal elements of the first NB rows and columns of\n*          the reduced matrix.  D(i) = A(i,i).\n*\n*  E       (output) DOUBLE PRECISION array, dimension (NB)\n*          The off-diagonal elements of the first NB rows and columns of\n*          the reduced matrix.\n*\n*  TAUQ    (output) DOUBLE PRECISION array dimension (NB)\n*          The scalar factors of the elementary reflectors which\n*          represent the orthogonal matrix Q. See Further Details.\n*\n*  TAUP    (output) DOUBLE PRECISION array, dimension (NB)\n*          The scalar factors of the elementary reflectors which\n*          represent the orthogonal matrix P. See Further Details.\n*\n*  X       (output) DOUBLE PRECISION array, dimension (LDX,NB)\n*          The m-by-nb matrix X required to update the unreduced part\n*          of A.\n*\n*  LDX     (input) INTEGER\n*          The leading dimension of the array X. LDX >= M.\n*\n*  Y       (output) DOUBLE PRECISION array, dimension (LDY,NB)\n*          The n-by-nb matrix Y required to update the unreduced part\n*          of A.\n*\n*  LDY     (input) INTEGER\n*          The leading dimension of the array Y. LDY >= N.\n*\n\n*  Further Details\n*  ===============\n*\n*  The matrices Q and P are represented as products of elementary\n*  reflectors:\n*\n*     Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb)\n*\n*  Each H(i) and G(i) has the form:\n*\n*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'\n*\n*  where tauq and taup are real scalars, and v and u are real vectors.\n*\n*  If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in\n*  A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in\n*  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).\n*\n*  If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in\n*  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in\n*  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).\n*\n*  The elements of the vectors v and u together form the m-by-nb matrix\n*  V and the nb-by-n matrix U' which are needed, with X and Y, to apply\n*  the transformation to the unreduced part of the matrix, using a block\n*  update of the form:  A := A - V*Y' - X*U'.\n*\n*  The contents of A on exit are illustrated by the following examples\n*  with nb = 2:\n*\n*  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):\n*\n*    (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 )\n*    (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 )\n*    (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  )\n*    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )\n*    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )\n*    (  v1  v2  a   a   a  )\n*\n*  where a denotes an element of the original matrix which is unchanged,\n*  vi denotes an element of the vector defining H(i), and ui an element\n*  of the vector defining G(i).\n*\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  d, e, tauq, taup, x, y, a = NumRu::Lapack.dlabrd( m, nb, a, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 3 && argc != 3)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
  rblapack_m = argv[0];
  rblapack_nb = argv[1];
  rblapack_a = argv[2];
  if (argc == 3) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  m = NUM2INT(rblapack_m);
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (3th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  n = NA_SHAPE1(rblapack_a);
  if (NA_TYPE(rblapack_a) != NA_DFLOAT)
    rblapack_a = na_change_type(rblapack_a, NA_DFLOAT);
  a = NA_PTR_TYPE(rblapack_a, doublereal*);
  ldy = n;
  nb = NUM2INT(rblapack_nb);
  ldx = m;
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,nb);
    rblapack_d = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  d = NA_PTR_TYPE(rblapack_d, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,nb);
    rblapack_e = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  e = NA_PTR_TYPE(rblapack_e, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,nb);
    rblapack_tauq = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  tauq = NA_PTR_TYPE(rblapack_tauq, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,nb);
    rblapack_taup = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  taup = NA_PTR_TYPE(rblapack_taup, doublereal*);
  {
    na_shape_t shape[2];
    shape[0] = ldx;
    shape[1] = MAX(1,nb);
    rblapack_x = na_make_object(NA_DFLOAT, 2, shape, cNArray);
  }
  x = NA_PTR_TYPE(rblapack_x, doublereal*);
  {
    na_shape_t shape[2];
    shape[0] = ldy;
    shape[1] = MAX(1,nb);
    rblapack_y = na_make_object(NA_DFLOAT, 2, shape, cNArray);
  }
  y = NA_PTR_TYPE(rblapack_y, doublereal*);
  {
    na_shape_t shape[2];
    shape[0] = lda;
    shape[1] = n;
    rblapack_a_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
  }
  a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublereal*);
  MEMCPY(a_out__, a, doublereal, NA_TOTAL(rblapack_a));
  rblapack_a = rblapack_a_out__;
  a = a_out__;

  dlabrd_(&m, &n, &nb, a, &lda, d, e, tauq, taup, x, &ldx, y, &ldy);

  return rb_ary_new3(7, rblapack_d, rblapack_e, rblapack_tauq, rblapack_taup, rblapack_x, rblapack_y, rblapack_a);
}

void
init_lapack_dlabrd(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "dlabrd", rblapack_dlabrd, -1);
}