File: dlaed5.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (87 lines) | stat: -rw-r--r-- 4,204 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#include "rb_lapack.h"

extern VOID dlaed5_(integer* i, doublereal* d, doublereal* z, doublereal* delta, doublereal* rho, doublereal* dlam);


static VALUE
rblapack_dlaed5(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_i;
  integer i; 
  VALUE rblapack_d;
  doublereal *d; 
  VALUE rblapack_z;
  doublereal *z; 
  VALUE rblapack_rho;
  doublereal rho; 
  VALUE rblapack_delta;
  doublereal *delta; 
  VALUE rblapack_dlam;
  doublereal dlam; 


  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  delta, dlam = NumRu::Lapack.dlaed5( i, d, z, rho, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE DLAED5( I, D, Z, DELTA, RHO, DLAM )\n\n*  Purpose\n*  =======\n*\n*  This subroutine computes the I-th eigenvalue of a symmetric rank-one\n*  modification of a 2-by-2 diagonal matrix\n*\n*             diag( D )  +  RHO *  Z * transpose(Z) .\n*\n*  The diagonal elements in the array D are assumed to satisfy\n*\n*             D(i) < D(j)  for  i < j .\n*\n*  We also assume RHO > 0 and that the Euclidean norm of the vector\n*  Z is one.\n*\n\n*  Arguments\n*  =========\n*\n*  I      (input) INTEGER\n*         The index of the eigenvalue to be computed.  I = 1 or I = 2.\n*\n*  D      (input) DOUBLE PRECISION array, dimension (2)\n*         The original eigenvalues.  We assume D(1) < D(2).\n*\n*  Z      (input) DOUBLE PRECISION array, dimension (2)\n*         The components of the updating vector.\n*\n*  DELTA  (output) DOUBLE PRECISION array, dimension (2)\n*         The vector DELTA contains the information necessary\n*         to construct the eigenvectors.\n*\n*  RHO    (input) DOUBLE PRECISION\n*         The scalar in the symmetric updating formula.\n*\n*  DLAM   (output) DOUBLE PRECISION\n*         The computed lambda_I, the I-th updated eigenvalue.\n*\n\n*  Further Details\n*  ===============\n*\n*  Based on contributions by\n*     Ren-Cang Li, Computer Science Division, University of California\n*     at Berkeley, USA\n*\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  delta, dlam = NumRu::Lapack.dlaed5( i, d, z, rho, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 4 && argc != 4)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
  rblapack_i = argv[0];
  rblapack_d = argv[1];
  rblapack_z = argv[2];
  rblapack_rho = argv[3];
  if (argc == 4) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  i = NUM2INT(rblapack_i);
  if (!NA_IsNArray(rblapack_z))
    rb_raise(rb_eArgError, "z (3th argument) must be NArray");
  if (NA_RANK(rblapack_z) != 1)
    rb_raise(rb_eArgError, "rank of z (3th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_z) != (2))
    rb_raise(rb_eRuntimeError, "shape 0 of z must be %d", 2);
  if (NA_TYPE(rblapack_z) != NA_DFLOAT)
    rblapack_z = na_change_type(rblapack_z, NA_DFLOAT);
  z = NA_PTR_TYPE(rblapack_z, doublereal*);
  if (!NA_IsNArray(rblapack_d))
    rb_raise(rb_eArgError, "d (2th argument) must be NArray");
  if (NA_RANK(rblapack_d) != 1)
    rb_raise(rb_eArgError, "rank of d (2th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_d) != (2))
    rb_raise(rb_eRuntimeError, "shape 0 of d must be %d", 2);
  if (NA_TYPE(rblapack_d) != NA_DFLOAT)
    rblapack_d = na_change_type(rblapack_d, NA_DFLOAT);
  d = NA_PTR_TYPE(rblapack_d, doublereal*);
  rho = NUM2DBL(rblapack_rho);
  {
    na_shape_t shape[1];
    shape[0] = 2;
    rblapack_delta = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  delta = NA_PTR_TYPE(rblapack_delta, doublereal*);

  dlaed5_(&i, d, z, delta, &rho, &dlam);

  rblapack_dlam = rb_float_new((double)dlam);
  return rb_ary_new3(2, rblapack_delta, rblapack_dlam);
}

void
init_lapack_dlaed5(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "dlaed5", rblapack_dlaed5, -1);
}